
U C R L - M A - 1 2 0 6 0 6

Government Acquisition
Through

Electronic Commerce

(GATEC)

Internal Description and
 Maintenance Guide

Doc Id: TISP940106

Rev Id: Release 1

Release Date: 1 January 1994

Prepared for: Prepared by:

Aeronautical Systems Center LLNL GATEC Project Staff
Operational and Central Support EC/EDI Projects
 Contracting Division Technology Information Systems Program
Air Force Materiel Command Lawrence Livermore National Laboratory
Wright-Patterson AFB, Ohio Livermore, CA 94550

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of
their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California.
The views and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Work performed under the auspices of the United States Department of Energy by Lawrence
Livermore National Laboratory under contract number W-7405-ENG-48 and DOE Work For
Others project number L-788A.

- i - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents

SECTION 1 Interface to Legacy System.. 1

1.1 BCAS Download of RFQs ... 1
1.1.1.1 getopr_bsp_cron3 1

1.1.2 Support Software for RFQ download 5
1.1.2.1 readopr2 ... 5

1.2 Download of other BCAS specific Data 6
1.2.1.1 getstmntship_cron 6

1.3 Utilities Used for Download of BCAS Data 8
1.3.1.1 getwangfiles ... 8
1.3.1.2 BCASrunproc .. 9

1.4 BCAS Award Upload... 12
1.4.1.1 putuploads_cron....................................... 12
1.4.1.2 BCASupload .. 15

1.4.2 Utilities Used in Upload of BCAS Data 20
1.4.2.1 setUTN_aw_to_cl 20
1.4.2.2 get_UTNNumber_from_cdf 20
1.4.2.3 get_piin_from_cdf 21
1.4.2.4 acqerr ... 21

1.4.3 Gateway Utilities Used in Upload of Award Data... 22
1.4.3.1 resp_err, back2AWD01, backout, checkvars,

dumpvars, menumove, parsefields,
officetosysadm, upload, walkmenus 22

1.5 BCAS Item Description Upload .. 24
1.5.1.1 upload_bcas_item_desc_cron 24
1.5.1.2 BCASitemupload 26
1.5.1.3 selitemcdf... 37
1.5.1.4 itemerrtouser .. 37

1.6 BCAS Cancel Award Upload .. 38
1.6.1.1 upload_bcas_cancel_award_cron 38
1.6.1.2 BCAScancelaward 41
1.6.1.3 selcancelcdf.. 52
1.6.1.4 cancelerrtouser ... 52

1.7 Support Software for Upload/Download Crons 53
1.7.1.1 errtomgr ... 53
1.7.1.2 errtouser ... 53
1.7.1.3 errtomgr ... 54
1.7.1.4 cdf_check ... 54
1.7.1.5 cdf_regexp ... 55
1.7.1.6 regcomp, regexec, regsub, regerror 56

1.8 Gateway Support Software .. 59

- ii - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

1.8.1.1 bcaslogin, bcaslogout, checkresp, finis,
pfkey, substr, fixfield, cmdargs,
expresslogout ... 59

1.9 Multi-User Queue Public Domain Software 61
1.9.1.1 q ... 61
1.9.1.2 db_open, db_close, db_store, db_fetch,

db_delete, db_rewind, db_nextrec 63
1.9.1.3 tisp.. 64

1.10 Compilation and Installation of Interface to Legacy System
Software ... 65

1.11 Miscellaneous Software ... 68
1.11.1 Acknowledgment Monitoring Software................... 68

1.11.1.1 ack_cron_pl.. 68
1.11.1.2 997CDFtoDB ... 69

SECTION 2 Distributed User Interface (DUI) Software................................ 73

2.1 DUI Toolkit .. 73
2.1.1 Basic Architecture .. 74

2.1.1.1 Server ... 74
2.1.1.2 Client.. 75

2.1.2 Communications .. 75
2.1.2.1 Communications link 75
2.1.2.2 DUI Protocol.. 76
2.1.2.3 A Typical Session 76

2.1.3 DUI Class Hierarchy and Libraries.......................... 77
2.1.4 Application Programming Guide 79

2.1.4.1 Beginning and Ending a session 79
2.1.4.2 Event Driven Programming 79
2.1.4.3 Creating Forms .. 80
2.1.4.4 Modifiers and Constraints........................ 81
2.1.4.5 Callback Functions 81

2.1.5 Code Generation .. 83
2.1.5.1 Client Code Generation 83

2.1.6 DUI Source Directory .. 84
2.1.7 Detailed Working Example...................................... 85
2.1.8 DUI Detail Class/Object Descriptions 90

2.1.8.1 AppControl... 91
2.1.8.2 ChannelBuf .. 93
2.1.8.3 Communication_Object 94
2.1.8.4 Constraint ... 96
2.1.8.5 ConfigInfo .. 97

- iii - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents

2.1.8.6 DUI... 100
2.1.8.7 DUI_Command .. 102
2.1.8.8 DUI_Component .. 105
2.1.8.9 DUI_Dialog.. 107
2.1.8.10 DUI_End_Command 109
2.1.8.11 DUI_Field .. 111
2.1.8.12 DUI_Form .. 114
2.1.8.13 DUI_Group .. 115
2.1.8.14 DUI_Invisible_Field 117
2.1.8.15 DUI_Label ... 119
2.1.8.16 DUI_Multi_Selection 120
2.1.8.17 DUI_Range .. 123
2.1.8.18 DUI_Selection.. 125
2.1.8.19 DUI_Table ... 128
2.1.8.20 DUI_Text ... 132
2.1.8.21 DUI_Toggle ... 134
2.1.8.22 DUI_View .. 136
2.1.8.23 DUI_Widget ... 139
2.1.8.24 Date .. 141
2.1.8.25 Filebuf_With_Audit 142
2.1.8.26 Integer .. 144
2.1.8.27 Justified .. 145
2.1.8.28 Left_Justified ... 146
2.1.8.29 Lower_Case ... 147
2.1.8.30 Mandatory .. 148
2.1.8.31 Military_Date ... 149
2.1.8.32 Modifier ... 150
2.1.8.33 Numeric.. 151
2.1.8.34 Precision ... 152
2.1.8.35 Regular_Expression 153
2.1.8.36 Right_Justified ... 155
2.1.8.37 STRING ... 156
2.1.8.38 Session ... 160
2.1.8.40 Table_Column.. 166
2.1.8.41 Truncated ... 169
2.1.8.42 Unjustified.. 170
2.1.8.43 Upper_Case .. 171

2.2 GATEC Application .. 172
2.2.1 Class Hierarchy .. 172
2.2.2 Programming Hints .. 173
2.2.3 GATEC DUI Source Tree 173
2.2.4 GATEC Form Classes.. 173

2.2.4.1 Award_Form .. 175

- iv - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

2.2.4.2 Compose_Message_Form 180
2.2.4.3 Flag_Selection.. 183
2.2.4.4 Message_Form ... 186
2.2.4.5 Quote_Abstract_Form................................ 191
2.2.4.6 RFQ_Category ... 196
2.2.4.7 Review_Quote_Form 199
2.2.4.8 Review_RFQ_Form 203
2.2.4.9 Vendor_Performance_Data........................ 210
2.2.4.10 Workload_Form 211

2.3 Lead Buyer Application ... 214
2.3.1 Class Hierarchy .. 214
2.3.2 Programming Hints .. 215
2.3.3 Lead Buyer Source Tree .. 215
2.3.4 Lead Buyer Form Classes 216

2.3.4.1 Change_RFQs_Form 217
2.3.4.2 List_RFQs_Form 219
2.3.4.3 Price_History_Form................................... 222
2.3.4.4 Price_Performance_Form 224
2.3.4.5 RFQ_Summary .. 226
2.3.4.6 Range_List ... 230
2.3.4.7 Select_RFQs_Form 232
2.3.4.8 Statistics_Form... 234
2.3.4.9 Sort_Order.. 236
2.3.4.10 String .. 238
2.3.4.11 Summarized_RFQ.................................... 241

2.4 System Parameters Application ... 247
2.4.1 Class Hierarchy .. 247
2.4.2 Programming Hints .. 247
2.4.3 System Parameters Source Tree............................. 248
2.4.4 System Parameters From Classes 248

2.4.4.1 System_Parameters_Form 249
2.5 Windui Application .. 251

2.5.1 Basic Implementation Strategy 252
2.5.2 Class Hierarchy .. 252
2.5.3 DUI Resources ... 254
2.5.4 Communications .. 257
2.5.5 WINDUI Source Directory 258
2.5.6 WINDUI Classes.. 259

2.5.6.1 Communications_Script 260
2.5.6.2 Device_Independent_Bitmap 263
2.5.6.3 Local_Atom ... 265
2.5.6.4 Prompt_Dialog ... 267
2.5.6.5 Pushbutton_Bitmap 269

- v - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents

2.5.6.6 TMainWindow ... 271
2.5.6.7 Table_String ... 273
2.5.6.8 WTButton... 275
2.5.6.9 WTCheckBox... 277
2.5.6.10 WTComboBox ... 279
2.5.6.11 WTEdit ... 281
2.5.6.12 WTGroupBox... 283
2.5.6.13 WTListBox... 284
2.5.6.14 WTRadioButton 286
2.5.6.15 WTStatic .. 288
2.5.6.16 WTText .. 290
2.5.6.17 WTWindow.. 292
2.5.6.18 WTable ... 294
2.5.6.19 w_Command .. 300
2.5.6.20 w_Component .. 303
2.5.6.21 w_End_Component.................................. 304
2.5.6.22 w_Field... 305
2.5.6.23 w_Group... 307
2.5.6.24 w_Label.. 310
2.5.6.25 w_Selection .. 312
2.5.6.26 w_Table.. 314
2.5.6.27 w_Text ... 317
2.5.6.28 w_Toggle ... 319
2.5.6.29 w_View .. 321
2.5.6.30 w_Widget ... 323
2.5.6.31 Session ... 329
2.5.6.32 SerialBuf .. 332

SECTION 3 The GATEC Database Software .. 335

3.0.1 NARQ & NORA .. 335
3.1 NORA Principles ... 336

3.1.1 NORA Classes ... 336
3.1.2 Limitations ... 342
3.1.3 Detailed NORA Class Descriptions 342

3.1.3.1 CharColumn ... 343
3.1.3.2 Column... 345
3.1.3.3 DBObject ... 347
3.1.3.4 Connection ... 350
3.1.3.5 Database ... 352
3.1.3.6 Condition.. 354

- vi - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

3.1.3.7 Dual .. 357
3.1.3.8 ComplexQuery ... 358
3.1.3.9 DateColumn ... 361
3.1.3.10 Expression .. 364
3.1.3.11 FetchedGroup ... 367
3.1.3.12 FetchedRows .. 368
3.1.3.13 FloatColumn... 369
3.1.3.14 ImmediateQuery....................................... 371
3.1.3.15 Join ... 373
3.1.3.16 LongColumn .. 375
3.1.3.17 QueryResult ... 377
3.1.3.18 RowID .. 379
3.1.3.19 Sequence .. 381
3.1.3.20 SimpleQuery .. 382
3.1.3.21 Table... 384
3.1.3.22 RawColumn ... 387
3.1.3.23 Query.. 389
3.1.3.24 NumberColumn.. 391

3.2 NARQ Library Principles .. 393
3.2.1 NARQ Library Generation..................................... 393

3.2.1.1 Acquisition Object 396
3.2.1.2 Award Object ... 397
3.2.1.3 AwardLineItem Object 399
3.2.1.4 AwardPurchaseType Object 401
3.2.1.5 BCASAward Object................................... 402
3.2.1.6 Buyer Object .. 403
3.2.1.7 BuyerAssignment Object 403
3.2.1.8 BuyerNote Object 404
3.2.1.9 CancellationCode Object 406
3.2.1.10 Clause ... 407
3.2.1.11 ClauseCertifiication 408
3.2.1.12 Commuinicator Object 409
3.2.1.13 CompetitionCode Object.......................... 410
3.2.1.14 Contact Object.. 411
3.2.1.15 ControlStandards Object 412
3.2.1.16 ControlVersion Object 412
3.2.1.17 Currency Object 412
3.2.1.18 DeliverySchedule Object 413
3.2.1.20 DocumentAddressee Object..................... 415
3.2.1.23 DocumentType Object 416
3.2.1.24 DocumentVersion Object......................... 417
3.2.1.25 DocumentVersionType Object 418
3.2.1.26 DownloadStockClass Object.................... 419

- vii - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents

3.2.1.27 FOBAcceptancePoint Object 419
3.2.1.28 FederalStockClass Object 420
3.2.1.29 FreeOnBoard Object 421
3.2.1.30 FunctionalAck Object 421
3.2.1.31 FunctionalGroupHdr Object 422
3.2.1.32 FundCode Object 422
3.2.1.33 GSDefaults Object 423
3.2.1.34 HoldStatus Object 424
3.2.1.35 Holidays Object.. 425
3.2.1.36 ISAAuthQualifier Object 426
3.2.1.37 ISADefaults Object 426
3.2.1.38 ISAInterchangeQualifier Object 427
3.2.1.39 InterchangeControlHdr Object................. 428
3.2.1.41 InvoiceAddress Object 429
3.2.1.42 Item Object... 430
3.2.1.43 ItemDetails Object 431
3.2.1.44 ItemPackageType Object 432
3.2.1.45 ItemWeightType Object........................... 433
3.2.1.46 LineItem Object 434
3.2.1.47 LineItemStatus Object.............................. 435
3.2.1.48 Marks Object .. 436
3.2.1.49 MarksQualifier Object 437
3.2.1.50 MeasurementApplicationCode Object 438
3.2.1.51 MeasurementData Object......................... 439
3.2.1.52 Message Object .. 440
3.2.1.53 MessageFrom Object 441
3.2.1.54 MessageReference Object 442
3.2.1.55 MessageTextBody Object 443
3.2.1.56 MessageTo Object.................................... 444
3.2.1.57 NegotiationAuthority 445
3.2.1.58 Nomenclature Object 446
3.2.1.59 Note Object .. 447
3.2.1.60 NoteStatus Object 448
3.2.1.61 OpenPurchaseRequest Object 449
3.2.1.62 Opr Object .. 450
3.2.1.63 OrganizationalEntity Object 451
3.2.1.64 OriginalTransaction Object 452
3.2.1.65 PTCType Object 453
3.2.1.66 Packaging Object 454
3.2.1.67 PaperworkType Object 455
3.2.1.68 Part Object.. 456
3.2.1.69 PartIdentifier Object................................. 457
3.2.1.71 PkgCharacteristicCode Object 459

- viii - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

3.2.1.72 PkgDescriptionCode Object..................... 460
3.2.1.73 PolicyTermsAndConditions Object 461
3.2.1.74 PreferredAccess Object 462
3.2.1.75 PriorityGroup Object................................ 463
3.2.1.76 Project Object... 464
3.2.1.77 PurchaseOrderAck Object........................ 465
3.2.1.78 PurchaseOrderChangeAckReq Object 466
3.2.1.79 Quote Object .. 467
3.2.1.80 QuoteLineItem Object.............................. 469
3.2.1.81 QuoteTerms Object 471
3.2.1.82 QuoteTypeCode Object............................ 472
3.2.1.83 RedirectReason Object............................. 473
3.2.1.84 RelatedPaperwork Object 474
3.2.1.85 ReqForQuote Object 475
3.2.1.86 ReqForQuoteLineItem Object.................. 476
3.2.1.87 RequiredResponseTime Object................ 478
3.2.1.88 ReviewStatus Object 479
3.2.1.89 SADBU Object .. 480
3.2.1.90 SendTo Object.. 481
3.2.1.91 Ship Object... 482
3.2.1.92 ShippingDeliveryTypes Object 483
3.2.1.93 ShippingDocPackage Object.................... 484
3.2.1.94 ShippingDocTypes Object 485
3.2.1.95 Signal Object .. 486
3.2.1.96 SolicitationHistory Object........................ 487
3.2.1.97 SolicitationLineItem Object 488
3.2.1.98 SolicitationLineItemError Object 489
3.2.1.100 TechnicalErrorDescription Object 491
3.2.1.101 TermsBasis Object 492
3.2.1.102 TermsMethods Object 493
3.2.1.103 Text Object... 494
3.2.1.104 TransactionReference Object 495
3.2.1.105 TransactionSent Object 496
3.2.1.106 TypeOfMeasurement Object 497
3.2.1.107 Unit Object ... 498
3.2.1.108 UnitOfMeasure Object 499
3.2.1.109 UnitPriceCodeBasis Object.................... 500
3.2.1.110 UserManagerDefaults Object................. 501
3.2.1.111 adrs Object ... 502
3.2.1.112 VariationType Object............................. 503
3.2.1.113 Variations Object 504
3.2.1.114 Vendor Object .. 505
3.2.1.115 VendorAward Object 506

- ix - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

3.2.1.116 VendorContact Object........................... 507
3.2.1.117 VendorHistory Object 508
3.2.1.118 VendorQuoteLineItem Object................ 509

3.2.2 The GATEC Database Schema.............................. 510
3.2.3 Detailed Schema Description 510

3.2.3.1 ACCTG Table .. 511
3.2.3.2 ACQUISITION Table 512
3.2.3.3 ACTIVESTATUS Table 513
3.2.3.4 AWARD Table .. 514
3.2.3.5 AWARDLINEITEM Table........................ 515
3.2.3.6 AWARDPURCHASETYPE Table............ 516
3.2.3.7 BCASAWARD Table 517
3.2.3.8 BUYER Table .. 518
3.2.3.9 CANCELLATIONCODE Table 519
3.2.3.10 CLAUSE Table .. 520
3.2.3.11COMMUNICATOR Table 521
3.2.3.12 CONTACT Table..................................... 522
3.2.3.13 CONTROLSTANDARDS Table............. 523
3.2.3.14 CONTROLVERSION Table 524
3.2.3.15 DOCUMENT Table 525
3.2.3.16 DOCUMENTADDRESSEE Table 526
3.2.3.17 DOCUMENTSENT Table 527
3.2.3.18 DOCUMENTSTATUS Table 528
3.2.3.19 DOCUMENTTYPE Table 529
3.2.3.20 DOCUMENTVERSION Table................ 530
3.2.3.21DOCUMENTVERSIONTYPE Table....... 531
3.2.3.22 FREEONBOARD Table 532
3.2.3.23 FSCSIC Table .. 533
3.2.3.24 FUNCTIONALGROUPHDR Table 534
3.2.3.25 GSDEFAULTS Table 535
3.2.3.26 HOLDSTATUS Table 536
3.2.3.27 HOLIDAYS Table 537
3.2.3.28 INTERCHANGECONTROLHDR Table 538
3.2.3.29 ISADEFAULTS Table............................. 539
3.2.3.31 LINEITEM Table..................................... 541
3.2.3.32 MEASUREMENTAPPLICATIONCODE

Table .. 542
3.2.3.33 MEASUREMENTDATA Table 543
3.2.3.34 MESSAGE Table 544
3.2.3.35 MESSAGEFROM Table.......................... 545
3.2.3.36 MESSAGEREFERENCE Table 546
3.2.3.37 MESSAGETEXTBODY Table 547
3.2.3.38 MESSAGETO Table................................ 548

- x - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

3.2.3.39 NOMENCLATURE Table 549
3.2.3.40 NOTE Table ... 549
3.2.3.41 OFFLINERFQS Table 551
3.2.3.42 OPR Table .. 552
3.2.3.43 ORIGINALTRANSACTION Table 553
3.2.3.44 PACKAGING Table 554
3.2.3.45 PART Table ... 555
3.2.3.46 PIINS Table.. 556
3.2.3.47 PREOPR Table .. 557
3.2.3.48 PRIORITYGROUP Table........................ 558
3.2.3.49 QUOTE Table .. 559
3.2.3.50 QUOTELINEITEM Table 560
3.2.3.51 QUOTETERMS Table............................. 562
3.2.3.52 RELATEDPAPERWORK Table............. 563
3.2.3.53 REQFORQUOTE Table 564
3.2.3.54 REQFORQUOTELINEITEM Table 565
3.2.3.55 REVIEWSTATUS Table 567
3.2.3.56 SADBU Table .. 568
3.2.3.57 SHIP Table ... 569
3.2.3.58 SHIPPINGDOCPACKAGE Table 570
3.2.3.59 ITECONFIGURATION Table 571
3.2.3.60 SOLICITATIONHISTORY Table 572
3.2.3.61 SOLICITATIONLINEITEM Table 573
3.2.3.62 SOLICITATIONLINEITEMERROR Table

... 574
3.2.3.63 STATUSOPERATION Table 575
3.2.3.64 STMNT Table .. 576
3.2.3.65 TECHNICALERRORDESCRIPTION Table

... 577
3.2.3.66 TERMSBASIS Table 578
3.2.3.67 TEXT Table ... 579
3.2.3.68 TRANSACTIONSENT Table 580
3.2.3.69 UNIT Table .. 581
3.2.3.70 UNITOFMEASURE Table 582
3.2.3.71 USERMANAGERDEFAULTS Table..... 583
3.2.3.72 VADRS Table .. 584
3.2.3.73 VARIATIONS Table 585
3.2.3.74 VENDOR Table 586

3.2.4 NARQ Code Generation Utility............................. 587
3.2.5 NARQDEF Detail Reference 587

3.2.5.1 DATATYPE Table 587
3.2.5.2 DERIVEDOBJECT Table 588
3.2.5.3 OBJECT Table ... 589

- xi - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

3.2.5.4 OBJECTCONSTANTS Table 590
3.2.5.5 OBJECTELEMENT Table 591
3.2.5.6 OBJECTRELATIONSHIP Table 592
3.2.5.7 RELATION Table...................................... 593
3.2.5.8 SIMPLEOBJECT Table............................. 594

3.3 Development Environment .. 595
3.3.1 Building Libraries .. 596
3.3.2 Making Changes to Libraries 597

3.4 Database Connection.. 598
3.4.1 Searching a Single Table.. 600
3.4.2 Creating a New Record .. 603
3.4.3 Deleting an Existing Record 605

3.5 Glossary of Database Terms .. 607

SECTION 4 CDFDB Library ... 609

4.1 Design Intent .. 609
4.2 Dependencies ... 609
4.3 Advantages to the CDF Approach ... 613
4.4 Disadvantages to the CDF Approach 614
4.5 Short Comings (Implementation)... 614
4.6 CDFtoDB ... 614
4.7 Interface Description (chk_mand) ... 616
4.8 Creating New Applications for New Document Types 618
4.9 Existing Applications ... 620

4.9.1 843CDFtoDB ... 620
4.9.2 838cCDFtoDB ... 620
4.9.3 824CDFtoDB ... 620
4.9.4 864CDFtoDB ... 621

4.10 Short Comings.. 621
4.11 DBtoCDF ... 622
4.12 Interface Description for DBtoCDF() 624
4.13 Creating routines for new document types 625

4.13.1 Applications using DBtoCDF 626
4.13.1.1 840DBtoCDF ... 627
4.13.1.2 850DBtoCDF ... 627
4.13.1.3 BCASDBtoCDF 628

4.13.2 DBtoCDF Short Comings 628
4.14 Building and Testing .. 628
4.15 CDFDB Unit Testing ... 629
4.16 System Testing ... 629
4.17 System Install ... 629

- xii - 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table of Contents (Continued)

4.18 Diagnostic Error Messages .. 629

SECTION 5 Transport .. 631

5.1 Transport Overview ... 631
5.2 Transport Approach ... 632
5.3 Addressing ... 633
5.4 Outbound.. 635
5.5 Inbound .. 636
5.6 Transport Support Software ... 639

5.6.1 input ... 639
5.6.2 newsyslog ... 640
5.6.3 cdfretry ... 641

5.7 Future Enhancements ... 641
5.8 Configuration Dependencies .. 642

SECTION 6 GATEC 2 Test Matrix.. 643

6.1 The Matrix.. 643

- 1- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 1 Interface to Legacy System

The software that comprises the interface to the legacy system is
primarily located at $CVSROOT/src/wang in the GATEC
development environment. Other support software is distributed in
$CVSROOT/tisp, $CVSROOT/db, $CVSROOT/que, and
CVSROOT/narqdb/src/bin/readopr2.

1.1 BCAS Download of RFQs

NAME

getopr_bsp_cron3 - get new open purchase requests (and
associated item description) from the Wang BCAS system and load
them into the GATEC database.

SYNOPSIS

getopr_bsp_cron3 [-s]

DESCRIPTION

getopr_bsp_cron3 downloads all new BCAS open purchase
requests that match the system-wide download criteria. It checks
for the existence of the $LOCKFILE,
/home/bcas/getopr_bsp_cron_IS_RUNNING. If $LOCKFILE
exists, getopr_bsp_cron3 assumes that an instance of itself is
already running, else it creates $LOCKFILE.

getopr_bsp_cron3 calls "getwangfiles -p cpopr" to obtain the file
OPR_ALL.dat from the Wang. This file contains all current open
purchase requests on the Wang BCAS system.OPR_ALL.dat is
loaded into the PreOPR table by calling sqlldr to actually load into
the SQL View v_preopr. v_preopr implements constraints on OPR
records, and accepts
those OPR records where:

1. The OPR does not already exist in the Solicitation-LineItem
rdbms table.

- 2- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2. The BSP (buyer id) in the OPR is in the DownloadBuyers rdbms
table.

3. The total estimated price of the OPR is less than or equal to the
value of the EstimatedPriceLimit column in the
UserManagerDefaults rdbms table.

4. The priority of the OPR is greater than or equal to the value of
the MaximumPriority column in the UserManagerDefaults rdbms
table.

Once all the new records have been loaded into the PreOpr table, a
list of stock numbers for which item and nomenclature descriptions
are needed is generated from the PreOpr table.

getopr_bsp_cron3 calls "getwangfiles -p cpitstk" with up to 14 of
these stock number item descriptions. For each group of stock
numbers, getwangfiles will obtain from the Wang two files:
ITEM_ALL.dat and NOME_ALL.dat. These two files are loaded
into the Item rdbms table and the Nomenclature rdbms table.
Then, the rdbms table Opr is deleted and recreated, and those
OPR's in the PreOpr table with associated Item records are loaded
into the Opr table. Finally, the program readopr2 will read all
records from the Opr table, and place them into the appropriate
rdbms tables such that buyers logged into GATEC will see the new
OPR's on their "Unissued"
screen.

getopr_bsp_cron3 can only download 14 Item descriptions at a
time, so it loops over each group of 14, calling readopr2 for each
group.

When getopr_bsp_cron3 exits, it removes the $LOCKFILE.

INTERNAL DESCRIPTION

getopr_bsp_cron3 gets new open purchase requests (and the
associated item description) from the Wang BCAS system and
loads them into the GATEC database.

It is run roughly once an hour during business hours, via the UNIX
"cron" command.

Control Flow

if lockfile exists
then

exit (a previous invocation is still running)

- 3- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

else
create lockfile

fi

set signal handling to remove lockfile on program termination

Log onto the Wang and run the Wang procedure "cpopr" to create
a copy of the Wang OPR file.

Download the OPR file to the local UNIX computer via ftp.

if unsuccessful
then

exit
fi

Drop and recreate the sql table "preopr"

Reload the preopr table with the OPR file we just downloaded,
throwing away all records that don't match our download criteria.

Generate a list of all the unique stock numbers in the preopr file,
ordered by frequently used stock numbers first. We'll need to
obtain the item and nomenclature descriptions of these stock
numbers from BCAS.

While [more stock numbers on the list of unique stock numbers]
do

Pop up to 14 stock numbers from the unique list onto the
download list

Log onto the Wang and use the download list and the Wang
procedure "cpitstk" to create two files on the Wang: one containing
the item descriptions of the stock numbers, and one containing the
nomenclature descriptions of the stock numbers.

Download those two files to the local UNIX computer via
ftp.

if unsuccessful
then

exit
fi

Drop and recreate the sql tables "item" and "nomenclature".

Reload the item and nomenclature tables with the BCAS
files

we just downloaded.

- 4- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Drop and recreate the sql table "opr".

Move all records from table "preopr" to table "opr" that have stock
numbers in the newly loaded "item" table.

Invoke the external program "readopr2" to read the opr, item, and
nomenclature tables, and insert new records into the rest of the
database. Once those new records are inserted, buyers may begin
examining them.

if unsuccessful
then

exit
fi

done

OPTIONS

-s Skip the step of obtaining a new OPR file. This is mostly useful
for debugging and database reloading purposes.

DATABASE TABLES

v_preopr view into which OPR_ALL.dat is inserted
PreOpr table into which OPR_ALL.dat is loaded.

Also defines the view v_preopr.
Item table into which ITEM_ALL.dat is loaded
Nomenclature table into which NOME_ALL.dat is loaded
DownloadBuyers table containing valid GATEC buyers

SolicitationLineItem table containing
e x i s t i n g G A T E C O P R ' s
UserManagerDefaults table containing the
maximum estimated price and the maximum
priority of OPR's to download.

FILES

$LOCKFILE lock file
$HOME/set_ecedi_env sets gateway env vars
OPR_ALL.dat fixed-format file containing all BCAS OPR's
ITEM_ALL.dat fixed-format file containing up to 14 BCAS Item records
NOME_ALL.dat fixed-format file containing up to 14 BCAS

Nomenclature records
Item2.ctl Oracle control file for loading ITEM_ALL.dat
Nomenclature2.ctl Oracle control file for loading NOME_ALL.dat
/usr/spool/cron/crontabs/gatecmgr controlling cron file
/tmp/getopr_bsp_allstocknums$$
/tmp/getopr_bsp_somestocknums$$
/tmp/getopr_bsp_tmpstocknums$$

- 5- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

tmp files containing stock numbers

SEE ALSO

getwangf i les(1) , BCASrunproc(1) , downloadch(1) ,
r eadopr2 (1) , sh_ge t_ log in_ in fo (1) , cpopr (WANG) ,
cpitstk(WANG), sqlplus(1LOCAL), sqlldr(1), outline_wade(1),
getopr_bsp_cron3.pdl

BUGS

getopr_bsp_cron3 can take from 5 minutes to several hours to run,
depending on the number of new OPR's to download and the speed
of the TCP/IP link from the GATEC host to the Wang.

There is a fair chance that getopr_bsp_cron3 will prematurely
terminate due to some Wang error. This is not a problem, because
getopr_bsp_cron3 will pick up where it left off the next time it
runs.

The Wang is down for approximately 1 hour every day (Monday
through Friday) starting at 11:30 AM local time.

NOTES

Through experimentation, we have found that an acceptable cron
frequency is to run getopr_bsp_cron3 about once an hour >from
0600 through 1800. From 1200 to 1300 we increase the frequency
to once every ten minutes, so we can catch the Wang as soon as it
comes back up. Example cron entry:

Downloads new open purchase requests from Wang BCAS 30 6-10,13-18 * * 1-5
/home/gatec2/bin/getopr_bsp_cron3
Do the lunch rush
10,20,30,40 12 * * 1-5 /home/gatec2/bin/getopr_bsp_cron3

1.1.2 Support Software for RFQ download

NAME

readopr2 - insert WANG BCAS Open Purchase Requests into the
database.

SYNOPSIS

readopr2

- 6- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DESCRIPTION

readopr2 assumes that the Opr, Item, and Nomenclature tables
contain new WANG BCAS Open Purchase Requests (OPRs). It
also assumes that the Unit, Ship, and SiteConfiguration tables
contain system information.

readopr2 reads from these tables, and inserts rows into the
ReqForQuote, LineItem, ReqForQuoteLineItem, Document
Acquisition, SolicitationLineItem, and Part tables.

readopr2 exits 0 on success, 1 on failure.

DATABASE TABLES
Opr BCAS OPRs.
Item Item descriptions of the stock numbers in the

Opr table.
Nomenclature If the Item description contains more than

six lines of description, the rest of the
description is in this table.

Unit Conversions between Unit Of Issue and Unit
Of Measure.

Ship Copy of the BCAS Ship file.
SiteConfiguration Contains the Site Address (DODAAC) of

the local contracting office.
ReqForQuote
LineItem
ReqForQuoteLineItem
Document
Acquisition
SolicitationLineItem
Part

SEE ALSO

getopr_bsp_cron3(1), Connection(3N), Database(3N),
Table(3N), get_login_info(?)

1.2 Download of other BCAS specific Data

NAME

getstmntship_cron - get the Wang BCAS files stmnt, ship, vadrs
and acctg

- 7- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SYNOPSIS

getstmntship_cron

DESCRIPTION

getstmntship_cron logs onto the Wang BCAS system, creates the
files stmnt, ship, vadrs and acctg, ftp's the files down to the
GATEC site, and loads the files into the GATEC data base.

INTERNAL DESCRIPTION

getstmntship_cron first checks for the existence of the
$LOCKFILE, /home/bcas/getstmntship_cron_IS_RUNNING. If
$LOCKFILE exists, getstmntship_cron assumes that an instance of
itself is already running, else it creates $LOCKFILE.
getstmntship_cron calls "getwangfiles -p cpbcas" to run the Wang
procedure cpbcas, and download via ftp all files created by the
Wang procedure.

getstmntship_cron drops and recreates the GATEC rdbms tables
"Ship", "Stmnt", "Acctg", and "Vadrs" with separate sqlplus
commands. Then, using separate sqlldr commands, it loads each
downloaded file into the GATEC rdbms.

DATABASE TABLES

Stmnt table into which stmnt.dat is loaded.
Ship table into which ship.dat is loaded.
Acctg table into which acctg.dat is loaded.
Vadrs table into which vadrs.dat is loaded.

FILES

$LOCKFILE lock file
$HOME/set_ecedi_env sets gateway env vars
stmnt.dat fixed-format file containing all

BCAS Order Statements.
Stmnt.ctl Oracle control file for loading

stmnt.dat.
ship.dat fixed-format file containing all

BCAS Ship-to data.
Ship.ctl Oracle control file for loading

ship.dat.
acctg.dat fixed-format file containing all

BCAS Accounting data.
Acctg.ctl Oracle control file for loading

acctg.dat.
vadrs.dat fixed-format file containing all

BCAS Vendor Address data.

- 8- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Vadrs.ctl Oracle control file for vadrs.dat.

SEE ALSO

getwangf i les(1) , BCASrunproc(1) , downloadch(1) ,
cpbcas(WANG), sqlplus(1LOCAL), sqlldr(1), ORACLE RDBMS
Utilities User's Guide

BUGS

The vadrs file (Vendor address) is large, about 4 megabytes.
Successful ftp from the wang is sometimes difficult. Keep trying.

If any active user on the system (e.g., a GATEC buyer) access one
of the above DATABASE TABLES after it has been deleted, but
before it has been reloaded, results are undefined. It is
recommended that this procedure be run by the system manager
while the system is quiescent. getstmntship_cron should really
handle this gracefully.

1.3 Utilities Used for Download of BCAS Data

NAME

getwangfiles - run a procedure on the Wang and get the files
created by the procedure

SYNOPSIS

getwangfiles -p cpopr | cpbcas

cat <fileofstocknumbers> | getwangfiles -p cpitstk

DESCRIPTION

getwangfiles invokes BCASrunproc(1) to log onto the Wang VS
system and run either the Wang procedure cpopr(WANG),
cpbcas(WANG), cpitstk(WANG).

BCASrunproc(1) creates one or more files on the Wang.
getwangfiles uses downloadch(1) to obtain those files via FTP and
place them in the current working directory.

getwangfiles exits 0 on success, 1 on failure.

- 9- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

OPTIONS

-p cpopr | cpbcas | cpitsk procedure to run on the wang.

LIMITATIONS

The Wang host domain name and the Wang userid for login are
hard coded in the program. The current values are

download_host='wpwan08.wpafb.af.mil'

download_user='g2w'

FILES

$LOCKFILE lock file
$HOME/set_ecedi_env sets gateway env vars
/usr/spool/cron/crontabs/gatecmgr controlling cron file
/tmp/getwangdat$$ tmp file containing data to be

passed to BCASrunproc
/tmp/getwanggwout$$ tmp file containing

BCASrunproc output

SEE ALSO

BCASrunproc(1), downloadch(1), cpopr(WANG), cpitstk(WANG),
getwangfiles.pdl

NAME

BCASrunproc - Gateway program to run a procedure on a WANG
VS system.

SYNOPSIS

BCASrunproc -l BCASaccount [-h] [-p password-fR] [-s
BCASsystem] [-t timeout] cpopr | cpbcas

BCASrunproc -l BCASaccount -f fileofstocknumbers [-h] [-p
password-fR] [-s BCASsystem] [-t timeout] cpitstk

DESCRIPTION

BCASrunproc uses telnet to connect to BCASsystem and log on
using BCASaccount. It emulates a human user logged in to the
Wang. From the Wang Command Processor menu, it invokes one
of the procedures cpopr, bpcas, or cpitstk. It assumes procedure is
in volume VOL333 and library G2WPGM. The procedures cpopr

- 10- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

and cpbcas expect no input from BCASrunproc. The procedure
cpitstk expects a series of up to 14 stock numbers to be input.

BCASrunproc greps for all Wang output of the form "file ...
created", and echoes that output to stdout. When the procedure
finishes and returns to the Command Processor menu,
BCASrunproc then logs out from the Wang.

BCASrunproc exits 0 on success, 1 on failure.

INTERNAL DESCRIPTION

Set up interrupt handling

call procedure cmdargs to parse the command line, obtain:

BCASaccount, BCASpassword(deprecated), BCASsystem,
_timeout, program, and perhaps stock_file.

connect to bcas via telnet.
call procedure bcaslogin
if ! ok
then

exit
fi

Output pfkey(1) to get to "Run program or procedure" menu
if didn't get there
then

exit
fi

Output program to run

Look for bcas response "Procedure ... in progress"

if ! found
then

exit
fi
while [1] # loop forever
do

if no response from wang in 120 seconds
then

break
fi
if response was "Procedure .. in progress"
then

continue
fi

- 11- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

if response was "procedure ... beginning"
then

continue
fi
if response was "file ... created"
then

continue
fi
if response was "procedure ... finished"
then

continue
fi
if response was "Wang VS Command Processor"
then

break
fi
if response was "GETPARM ... Correction Required"
then

break
fi
if response was "Enter stock number"
then

read a stock number from the stock number file on
cmd line,

and output it.
continue

done
logout from bcas

OPTIONS

-l BCASaccount Wang BCAS userid to use.

-f fileofstocknumbers file containing up to 14 stock
numbers, one per line.

-h print usage message.

-p password Wang BCAS password to use.
Specifying this option creates a
security hazard, because a utility
such as ps(1) can obtain the
BCASrunproc command-line
arguments, hence the password.

-s BCASsystem TCP/IP domain name of Wang. If
not specified, defaults to
wpwan08.wpafb.af.mil.

- 12- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

-t timeout Set timeout period for term
statements, in seconds. If not
specified, defaults to 90 seconds.

ENVIRONMENT

$ECLIB must be set. See FILES.

FILES

$ECLIB/gatewaylog File where Gateway puts log
messages.

$ECLIB/coredir Directory where Gateway puts core
dumps.

/etc/.authlist File containing encrypted password
for the specified BCASaccount.
This file is NOT be world-readable.

BUGS

If this program is running without a controlling terminal, (e.g., if it
is invoked from cron), then it will not normally write anything to
stdout. A work-around is to have cron (or the process spawned by
cron) invoke it like this:

echo "" | BCASrunproc

SEE ALSO

BCASupload(1), bcasprocs_m4(3), BCASrunproc_m4.pdl,

1.4 BCAS Award Upload

NAME

putuploads_cron - make awards on BCAS

SYNOPSIS

putuploads_cron BCASaccount

DESCRIPTION

putuploads_cron examines GATEC's bcasupload queue to
determine if there are any awards on the queue. If so, it logs onto
the Wang BCAS system using the Wang BCAS account

- 13- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASaccount and makes one award for each item on the queue. If
the award is successful, putuploads_cron passes the award data to
the process that translates the award data into an ANSI X12 850
transaction. If the award fails due to BCAS being down,
putuploads_cron re-queues the award data onto the bcasupload
queue and exits. If the award fails due to an error in the award data,
putuploads_cron will send the award back to the originating buyer,
and will continue with the next award.

INTERNAL DESCRIPTION

putuploads_cron checks for the existence of the $LOCKFILE,
/home/bcas/putuploads_cron _IS_RUNNING<BCASaccount>.
If $LOCKFILE exists, putuploads_cron assumes that an instance
of itself is already running, else it creates $LOCKFILE.
putuploads_cron checks to see that the bcasupload queue is "UP".
If so, it pops the next item off the queue. A queue item consists of
two things. The first, the "Key", is the file containing Wang BCAS
award data. The second, the "Data", is one or more filenames
containing associated award information that will be translated into
ANSI X12 transactions.

putuploads_cron verifies that the "Key" file is correctly formatted
by first filtering the file through seluploadcdf, then checking the
result with cdf_check. Errors here cause two things to happen:

1. The GATEC award document is put back on the buyer's
"Closed" pile, with the program setUTN_aw_to_cl.

2. The text of the error message is sent to the buyer with the
program acqerr.

Assuming there are no errors with the file, it is sent to the program
BCASupload. If BCASupload reports:

"upload succeeded" then the award has been made on BCAS, and
each file in the "Data" is then sent for outbound processing with
the command:

lpr -Poutbound $File

If BCASupload reports an error of the form:

BCAS reports .* error then the text of the error message is sent to
the buyer with the program acqerr.

If there are any other errors, there was an abnormal occurrence
somewhere between the GATEC upload application BCASupload
and the Wang BCAS program that processes awards. Abnormal

- 14- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

occurrences cause the award to be re-queued, and putuploads_cron
exits.

When putuploads_cron exits, it removes the $LOCKFILE.

INTERNAL DESCRIPTION

Control Flow

If lockfile exists
then

exit (a previous invocation is still running)
else

create lockfile
fi

Set signal handling to remove lockfile on program termination

If the "bcasupload" queue is not UP
then

exit
fi

While [there are more items on the "bcasupload" queue]
do

Pop the item off the queue. An item consists of two files:
1. an upload file used to make an award on BCAS
2. a complex second file containing data used to
generate an X12 850.

If the upload file contains any syntax errors
then

Set the state of the acquisition from "Awarded" to
"Closed"
Send an error message to the responsible buyer.
Continue to end of while loop to get next item.

fi

Run the local program "BCASupload" to log onto the
Wang, emulate a buyer sitting at a terminal, and make an
award.

If "BCASupload" reports "upload succeeded"
then

Send the complex file (via lpr) for further
processing.
Continue to end of while loop to get next item.

fi

If "BCASupload" reports an error that the buyer can fix,

- 15- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

e.g., "No Such Vendor ID", "Invalid Negotiation
Authority", etc...

then
Set the state of the acquisition from "Awarded" to
"Closed"
Send an error message to the responsible buyer.
Continue to end of while loop to get next item.

else if "BCASupload" reports some other kind of error, e.g.,
it couldn't connect to the Wang because the Wang is
down,

then
Re-queue the data onto the bcasupload queue
exit by breaking out of the while loop.
(Assume that when cron runs this program in a half
hour, bcas will be back up)

fi
done (while loop)

FILES

$LOCKFILE lock file
$HOME/set_ecedi_env sets gateway env vars
/usr/spool/cron/crontabs/gatecmgr controlling cron file
/tmp/upload_error$$ t mp file containing upload

errors
/tmp/uploadcdf$$ tmp file containing name-

value pairs to be passed to
BCASupload

/tmp/BCASuploadout$$ tmp file containing output of
BCASupload

SEE ALSO

BCASupload(1) , acqerr (1) , se tUTN_aw_to_c l (1) ,
get_UTNNumber_from_cdf(1), , get_piin_from_cdf(1),
seluploadcdf(1), cdf_check(1), q(3), errtomgr(1), lpr(1),
putuploads_cron .pdl

NOTES
Through experimentation, we have found that an acceptable cron
frequency is once every half hour during business hours. Sample
cron entry:

Perform uploads of new awards to wang BCAS
25,55 6-10,12-19 * * 1-5 /home/gatec2/bin/putuploads_cron

NAME

- 16- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASupload - Gateway program to make an award on the Wang
BCAS system

SYNOPSIS

BCASupload BCASaccount [-h] [-p password-fR] [-s
BCASsystem] [-t timeout] cdffile

DESCRIPTION

BCASupload logs into BCAS over TCP and walks through the
menus to get to the AWARD menu. BCASupload uses the values
in cdffile to make an award. If the %contract_number in cdffile
exists, BCASupload performs a Delivery Order award. If
%contract_number is blank or non-existent, BCASupload performs
a Purchase Order award.

BCASupload exits 0 on success, something else on failure.

INTERNAL DESCRIPTION

Define all strings used in the cdf
Set up (some) interrupt handling

call procedure cmdargs to parse the command line, obtain:

BCASaccount, BCASpassword(deprecated), BCASsystem,
_timeout, program, and CDFfilelist.

connect to bcas via telnet.
call procedure bcaslogin
if ! ok
then

exit
fi

Make sure we're at the System Administrator's screen, if didn't get
there
then

exit
fi

call procedure "walkmenus" to get to the AWARD menu.
if didn't get there
then

exit
fi

Load cdf file into internal gateway variables

- 17- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Set all possible bcas error messages

if this is a normal PO (no contract_number)
then

output the pf1 key to get to the PRICED PURCHASE
ORDER AWARD screen

else
output the pf2 key to get to the DELIVERY ORDER
AWARD PROCESS screen

fi
if we didn't get there
then

exit
fi

call procedure "upload" to fill the data into the BCAS forms.
if ! ok
then

exit
fi

call procedure "backout" to log off from BCAS

OPTIONS

-l BCASaccount Wang BCAS userid to use.

-h print usage message.

-p password Wang BCAS password to use. Specifying
this option creates a security hazard, because
a utility such as ps(1) can obtain the
BCASrunproc command-line arguments,
hence the password.

-s BCASsystem TCP/IP domain name of Wang. If not
specified, defaults to
wpwan08.wpafb.af.mil.

-t timeout Set timeout period for Gateway term
statements, in seconds. If not specified,
defaults to 90 seconds.

ENVIRONMENT

$ECLIB must be set. See FILES.

FILES

- 18- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

$ECLIB/gatewaylog File where Gateway puts log messages.
$ECLIB/coredir Directory where Gateway puts core dumps.
/etc/.authlist File containing encrypted password for the

specified BCASaccount. This file should
NOT be world-readable. Recommend
chmod 600 /etc/.authlist.

BUGS

If this program is running without a controlling terminal, (e.g., if it
is invoked from cron), then it will not normally write anything to
stdout. A work-around is to have cron (or the process spawned by
cron) invoke it like this:

echo "" | BCASrunproc

SEE ALSO

bcasupl_m4.pdl, bcasprocs_m4(3), bcasupl_m4(3), Gateway
Programmer's Guide [REF000]

BCAS Award Upload CDF File Format

An example of an award CDF file is shown below,

%Xbegin
%Xpurpose BCAS award
%Xfilename BCASCDF
%Xdestination_host BCAS
%Xversion 2
%Xdate 94 01 11
#******** start of data elements ********
%award_date 94JAN11
%award_piin 94EF847
%buyer_code G1H
%another_fed_agency N
%competition_code Y
%confirm_with
%contract_number
%contractor_signs N
%discount_days_net 30
%do_rating c9e
%fob_code D
%line_item 0001
%negotiation_authority 0301
%number_of_line_items 1
%order_statements EX IN SI GU
%purchase_variation
%quantity 00006

- 19- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

%required_delivery_date 94FEB11
%review_accounting_class N
%solicitation_number 93R9011
%special_contract_order_preparation N
%supplemental_description N
%unit_price 1.0000
%variation_percent
%vendor_bcas_code TMPT007
%warranty_clause_days
%UTNNumber F0000093R9011001
%Xend

- 20- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

1.4.2 Utilities Used in Upload of BCAS Data

NAME

setUTN_aw_to_cl - change the state of an Acquisition from
Awarded to Closed.

SYNOPSIS

setUTN_aw_to_cl UTNNumber [AwardPIIN]

DESCRIPTION

setUTN_aw_to_cl changes an acquisition with the UTN Number
UTNNumber and with a ReviewStatus of 'AW' to one with a
ReviewStatus of 'CL'. This is usually done when an upload has
failed for a reason that can be corrected by a buyer. Moving the
Acquisition to 'CL' means that the buyer can then edit it, and re-
award it.

setUTN_aw_to_cl will also re-use AwardPIIN if it is specified. In
general, AwardPIIN is always specified, but if the upload has
failed due to the error 'Award Piin Already Used', then don't
specify it.

TABLES

Acquisition Table containing a UTNNumber's status.
Piins Table containing AwardPIIN to reuse.
Award
AwardLineItem
BCASAward

SEE ALSO

Oracle PL/SQL User's Guide and Reference, [REF001],
sh_get_login_info(1)

NAME

get_UTNNumber_from_cdf - extracts a UTNNumber from stdin
and displays it to stdout.

SYNOPSIS

- 21- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

get_UTNNumber_from_cdf

DESCRIPTION

get_UTNNumber_from_cdf reads from stdin and prints the first
occurrence of UTNNumber if a line of the form:

%UTNNumber UTNNumber

exists in stdin.

SEE ALSO

putuploads_cron(1)

NAME

get_piin_from_cdf - extracts an award piin from stdin and displays
it to stdout.

SYNOPSIS

get_piin_from_cdf

DESCRIPTION

get_piin_from_cdf reads from stdin and prints the first occurance
of piin if a line of the form

%award_piin piin

exists in stdin.

SEE ALSO

putuploads_cron(1)

NAME

acqerr - associate error text with a GATEC acquisition

SYNOPSIS

acqerr -u UTNNumber [-s subject]

- 22- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DESCRIPTION

acqerr reads from stdin and inserts text into the Oracle database.
Such text may then be reviewed by the GATEC buyer that is
handling the specified UTNNumber. acqerr exits 1 if there are any
errors, else exists 0.

DATABASE TABLES

SolicitationLineItemError An instance of some error text.
Text Multi-line text associated with one

SolicitationLineItemError row.

SEE ALSO

get_login_info(3), Programmer's Guide to the ORACLE
Precompilers [REF002].

BUGS

The SolicitationLineItemError table should probably be keyed on
UTNNumber rather than on (SolicitationNumber, LineItem). As it
is, UTNNumber must be considered a "smart key", containing
SiteCode, SolicitationNumber, and LineItem.

1.4.3 Gateway Utilities Used in Upload of Award Data

NAME

resp_err, back2AWD01, backout, checkvars, dumpvars,
menumove, parsefields, officetosysadm, upload, walkmenus -
Award-specific WANG BCAS Gateway functions

SYNOPSIS

call resp_err(resp, var_name)

call back2AWD01

call backout

call checkvars

call dumpvars

call menumove(pfk, menuname)

- 23- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

call parsefields(cdffile)

call upload

call walkmenus

DESCRIPTION

resp_err takes two arguments: resp, the response received >from
the Wang, and var_name, the error type, and displays an error
message to stdout.

back2AWD01 issues 4 calls to pfkey(1). Then it issues a
pfkey("HELP"), followed by a pfkey(1), then calls menumove to
move to the AWD01 screen.

backout moves the program from the Purchase Order or Delivery
Order menu back to the System Administrator's screen, then calls
bcaslogout.

checkvars checks that most needed variables are set, prior to
performing an award. If all critical variables are set, the global
variable ok is set to TRUE. Otherwise, an error message is printed
to stdout.

dumpvars displays a number or critical variables to stdou.

menumove takes two arguments: pfk, a pfk (1-32) to send, and
menuname, a menu to look for. If the menu is found, the global
variable ok is set to TRUE, else it is set to FALSE. If pfk is 0, no
stimulus is issued.

parsefields reads the file cdffile, which is assumed to be a cdf file
with lines of the form

%name value.

For each line in the cdf, parsefields assign value to the global
variable %name.

upload puts the data extracted from the CDF file into the award
process menus. In other words, it performs the award. On success,
the global variable ok is set to TRUE, otherwise ok is set to
FALSE.

walkmenus routine handles the traversal of the menus to the
AWARD menu. It is presumed that BCAS is on the SYSTEMS
ADMINISTRATORS menu when this routine is called. On

- 24- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

success, the global variable ok is set to TRUE, otherwise ok is set
to FALSE.

SEE ALSO

BCASrunproc(1), BCASupload(1)

1.5 BCAS Item Description Upload

NAME

upload_bcas_item_desc_cron

SYNOPSIS

upload_bcas_item_desc_cron

DESCRIPTION

Any item description, part number, and manufacturer information
that is modified by a buyer before issuing an RFQ is uploaded back
to BCAS via the Bourne Shell script upload_bcas_item_desc_cron.
When an RFQ is issued, the GATEC application writes a CDF file
containing the modified item, part, and manufacture data and
places the CDF filename on the b c a s i t e m queue.
upload_bcas_item_desc_cron takes item upload CDF filenames off
this queue (using the qpop utility), insures the data in them is
correct (using selitemcdf and cdf_check), then passes the filename
to the gateway script BCASitemupload BCASitemupload, then
uploads the information to the BCAS system.

INTERNAL DESCRIPTION

upload_bcas_item_desc_cron makes use of the gateway script
BCASitemupload to upload the content of item description CDF
files (whose filenames reside on the bcasitem queue) back to
BCAS.

After setting up file aliases and insuring that another version of
itself is not running, upload_bcas_item_desc_cron sets up its own
environment, then makes use of qstatus to insure the bcasitem item
queue still exists. Next, qstatus is used to make sure the queue is
operational. At this point the main loop is entered where the names
of CDF files to be processed are repeatedly popped off the
bcasitem queue via the qpop utility. After a check of the integrity

- 25- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

of the information popped off the queue (i.e. valid key and data),
the existence of the CDF file is confirmed. Next, the Perl scripts
selitemcdf and cdf_check are used to check to syntax of specified
fields in the file. If the syntax checks are passed, BCASitemupload
is called with the name of the CDF file whose data is to be
uploaded to BCAS. After execution a grep is made of
BCASitemupload output. If the keywords "item upload succeeded"
are detected, the name of the next file to process is popped off the
queue for processing. If the success string is not found, then a
check is made to determine if more than three consecutive errors
have occurred, if so the cron script is stopped. If the error count is
less than three, a check is made to determine whether
BCASitemupload has recommended requeuing the file. If so (and it
has not been requeued once), the file is requeued, otherwise a
check is made to see whether the BCAS failure was because of a
disconnect. If this was the case the file is requeued and the next file
is processed--otherwise the troubled file will not be requeued and
the next file will be examined by popping the bcascancel queue.

Processing (for non error situations) continues until the bcascancel
queue is empty. Bourne Shell scripts itemerrortouser, and
errtomgr are used to report errors to the gatec manager.

TESTING

Developing a test fixture for this software is very straightforward.
The following error conditions are detected:

lockfile exists (version of upload_bcas_item_desc_cron already
running)

cannot touch lockfile

cannot touch summary file

qstatus unknown exit error

queue not up

queue not empty

cdf filename null

cdf file does not exist

grammar error in CDF file

unable to send 850 CDF out to outbound queue

- 26- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

more than three consecutive errors detected in upload

REQUEUE message from BCASitemupload detected

DISCONNECT message from BCASitemupload detected

failed requeue

To make sure each condition is handled correctly, each error is
made to occur, then the output results can be verified.

FILES

/home/bcas/$LOCKFILE Lock file
$HOME/set_ecedi_env Sets gateway env vars
/home/bcas/item_upload_trace A summary of all item

uploads is placed in the file.
/home/bcas/item_upload_errors A summary of all item upload

errors is placed in the file.
/home/bcas/bcasitem.dat Used to manage bcasitem

queue
/home/bcas/bcasitem.idx Used to manage bcasitem

queue

SEE ALSO

BCASitemupload, qstat, qstatus, selitemcdf, cdf_check, errtomgr,
errtouser, bcasprocs_m4, parsefields_m4, bcashdr_m4

NAME

BCASitemupload

SYNOPSIS

BCASitemupload -t timeout -l BCASaccount <input cdf
file>

DESCRIPTION

BCASitemupload navigates BCAS menus to arrive at the ITEM
RECORD screen. Next, it places the item, manufacturer, and part
number data into the appropriate positions on the screen, then
commits the changes. Errors are reported to standard output, are
noted by upload_bcas_item_desc_cron, then mailed to the

- 27- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

gatecmgr. Error messages are mailed with the errtomgr and
itemerrtouser Bourne Shell scripts.

INTERNAL DESCRIPTION

The BCASitemupload gateway script takes an item description
CDF file (format described later in this description) and uploads its
contents into BCAS. This document is meant to be used in tandem
with the comments which are in the BCASitemupload file.

After setting up the output log files, BCASitemupload calls
function parsefields to read in the content of the item description
CDF file (which is specified to BCASitemupload as the 5th
parameter on the execute line). In order for parsefields to work,
variable names identical to those of the variable names specified in
the CDF file must be declared in BCASitemupload, so those
variables may be correctly assigned with their respective data.
Once this is accomplished, an attempt is made to connect to the
WANG. If this is successful, the function bcaslogin is used to enter
BCAS.. Next the BCAS screens are navigated via use of the pfkey
function to reach the item description entry screen. On entry to
each new screen, checks are made to insure the appropriate
responses are being made by BCAS via the search for expected
keywords in the term statements preceding the calls to the pfkey
functions. If at any time erroneous responses are detected, the
function failure_notice is used to mail a transcript record of the
screen interactions (up to the point of error) to the gatecmgr for
analysis.

When the item description input screen is reached, the stock
number of the item is input to BCAS (this is obtained from the data
in the cdf file). BCASitemupload can detect several error situations
which might arise at this interaction point; namely: item being held
by another process, item not found, and illegal item number. In all
cases an appropriate error message is generated to the transcript
files which will be mailed to the gatecmgr.

If the item number was a legal one, the existing item description is
displayed on the next screen. Actually only the first six item
description lines are displayed on this first screen. Each succeeding
item description screen reveals an additional fourteen lines of item
description (up to a maximum of 58 lines). Unfortunately, due to
the manner in which the 3rd and 4th item description screens were
designed, one cannot tell the difference between them and the 2nd
screen (i.e. there are no features written to the screen which are
different between the 2nd, 3rd, and 4th screens). This prevents
BCASitemupload from being able to access these 3rd and 4th
screens, for it would never know if the 3rd or 4th screen "came up"
successfully. Due to this difficulty BCASitemupload is limited to
replacing only item descriptions which contain less than or equal to

- 28- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

eighteen lines of forty character text. Fortunately almost all item
descriptions never even come close to using eighteen lines of text.

Initially, the key question BCASitemupload must answer is
whether, the second item description screen is going to be needed.
If BCASitemupload detects at least one blank item description line
on the first screen, this will not be necessary (since item
descriptions are not allowed to have blank lines in them); i.e. one
blank line implies the item description ended. In this case the next
question which must be answered is whether lines must be deleted
from the existing item description i.e. the new item description is
shorter than the original. The general algorithm that is followed is
that new lines overwrite old lines, when all the new lines have been
written, if old lines still exist, they are overwritten with blank lines.
This is done until all the old text has been overwritten. The same
algorithm is applied to the second screen (when item descriptions
using more than six lines are encountered).

When the initial item description screen has been displayed; the
first modifications will be to input the manufacturer name and part
number for the item. In order to insure that all characters that were
in these existing fields are overwritten (usually these fields are
blank), the strings which are output are extended to 30 characters
(for manufacturer) and 20 characters (for part number), by
concatenating spaces to the text with the function make_space.
When each item is input a check is made to insure the data was
accepted by BCAS (via term statements preceding the sending of
text) If not, appropriate error messages are generated for the
transcript file that will be mailed to gatecmgr

After these preliminary data items are input, the main loop of item
description input is entered. The function get_next_line is used to
obtain the next line of item description text (that was read in from
the cdf file). If it is non blank, the function make_space is called to
concatenate spaces onto the string to insure all previous text of the
original line of item description will be overwritten when this
string is written to BCAS. Each time a new line is input a check is
made to insure the line was accepted by BCAS. Next, a check is
made to see if it is necessary to go to the next item description
screen. This is done by evaluating whether the original item
description screen had any blank lines and whether the current line
output was line six.. The item description output loop is terminated
when all new item description lines have been input and all old
lines have been erased.

After the item description input has been entered successfully, the
pfkey function is used again to navigate back out of the BCAS
menus. In order for the script which makes use of BCASitem
upload to ascertain the status of the upload attempt,
BCASitemupload will output three types of messages.

- 29- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

A message which has the text "upload succeeded"

A message which has the text "REQUEUE"

A message which has other text.

If the transcript file has "upload succeeded" in it; this indicates no
errors were encountered in the upload and the upload was a
success. If the text "REQUEUE" is present this indicates that an
error was encountered that was not related to the content of the
CDF upload file (e.g. BCAS went down, an unknown screen
appeared during menu traversal). In this case the file is requeued
by the calling script so the upload attempt can be made again. If
other error text is output; this implies that re-queuing is likely to
result in success and that the situation should be examined by the
gatec manager before another upload attempt is made on the file.

TESTING

Developing a text fixture for BCAScitemupload would require a
series of tests which insure that all error conditions nominally
encountered for item upload are handled correctly. Error conditions
which might occur include,

attempt to mail error message failed

error deleting file

illegal cdf file name

error from parsefileds routine

connection refused

on unexpected BCAS screen

error getting current date

unable to go to BCAS MENU screen

unable to go to FILE MAINTENANCE screen

unable to go to ITEM MASTER MENU screen

stock number being held

stock number not found

illegal number

- 30- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

unable to go to ITEM RECORD screen

unable to input manufacturer name

unable to input part number name

unable to input item description line

did not successfully read next line of item description

unable to go to additional item screens

cannot go to third item description screen

To make sure each condition is handled correctly, each error is
made to occur, then the output results can be verified.

Another test would be to input test item description files having
item descriptions varying in length from one to eighteen lines,
replacing an existing item description with one line of text. Next,
this would then be done for existing item descriptions with
descriptions of 2, 3,.., and 18 lines. If the new data is updated
correctly in BCAS, this would be strong evidence that the software
is operating correctly.

- 31- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCAS Item Upload CDF File Format

An example of an item CDF file is shown below,

%Xbegin
%Xpurpose item upload
%Xfilename ITEM CDF
%Xdestination_host gatec.dui
%Xversion 2.4
%Xdate 93 05 26
%stock_number 7320PTEST2
%suffix
%unit_of_issue
%bsp G1R
%primary_customer
%variation
%automatic_po
%brand_name_sole_source
%commodity_assignment
%manufacturers_name RICOH1
%manufacturers_partno SM300034-1
%description01 THIS IS THE FIRST LINE
%description02
%description03
%description04
%description05
%description06
%description07
%description08
%description09
%description10
%description11
%description12
%description13
%description14
%description15
%description16
%description17
%description18
%description19
%description20
%description21
%description22
%description23
%description24
%description25
%description26
%description27
%description28

- 32- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

%description29
%description30
%description31
%description32
%description33
%description34
%description35
%description36
%description37
%description38
%description39
%description40
%description41
%description42
%description43
%description44
%description45
%description46
%description47
%description48
%Xend

- 33- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASitemupload Variable Definitions

Global Variables used as Returned Parameters from
Procedures

string space_string - returned by procedure make_space. Will
contain the number of spaces requested to be placed in string.

string line_to_ouput - returned by procedure get_next_line. Will
contain the next item description line from the CDF file.

Global Constants

int total_chars_for_man_name - Number of characters BCAS
allows for manufacturer name in the item description (30).

int total_chars_for_part_no - Number of characters BCAS allows
for part number in the item description (20).

int total_chars_for_item_desc - Maximum number of characters for
each item description line of text (40).

string _me - Intifies gateway script (GW) for error message output.

Variables Used by Procedure Parsefields to Hold Item CDF
File Contents

string Xbegin - CDF related.
string Xpurpose - CDF related.
string Xfilename - CDF related.
string Xdestination_host - CDF related.
string Xversion - CDF related.
string Xdate - CDF related.
string stock_number - used to pull up item description in BCAS.
string suffix - not used (FSC suffix).
string unit_of_issue - not used (e.g. EA, PG, etc.).
string bsp - not used (buyer e.g. G1R).
string primary_customer - not used.
string variation - not used.
string automatic_po - not used.
string brand_name_sole_source - not used.
string commodity_assignment - not used.
string manufacturers_name - Updated.
string manufacturers_partno - Updated.
string description01 - begin item description.
string description02
string description03

- 34- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

string description04
string description05
string description06
string description07
string description08
string description09
string description10
string description11
string description12
string description13
string description14
string description15
string description16
string description17
string description18
string description19
string description20
string description21
string description22
string description23
string description24
string description25
string description26
string description27
string description28
string description29
string description30
string description31
string description32
string description33
string description34
string description35
string description36
string description37
string description38
string description39
string description40
string description41
string description42
string description43
string description44
string description45
string description46
string description47
string description48
string Xend - CDF related

File I/O

- 35- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

file recordpipe - i/o channel for file with name bcas-item-upload-
record. A detailed transcript record kept in /home/bcas directory.

file logpipe - i/o channel for file with name of form <month>-
<day>-<year>-<hr>-<min>-<sec>-item-log (e.g. 05-18-93-17-22-
10-item-log) hold summary information for BCAS interaction.
Kept in /tmp directory.

file input - i/o channel for input CDF file.

string fname - file name of cdf file currently processing.

string log_fname - file name for item log file.

Variables Used to Monitor Initial Item Description Screen
Display

int end_of_first_screen - a 'ITEM RECORD' string and 'PRINT
SCREEN' string (output as BCAS paints the current screen) have
been detected.

int blank_item_lines - number of blank lines of item description
detected.

int item_record_string_found - a 'ITEM RECORD' string (output
as BCAS paints the current screen) has been detected.

Variables Used to Correctly Output Manufacturers Name and
Part Number

int num_man_chars - current number of characters in
manufacturers name just read from cdf.

string num_blank_spaces - number of blank spaces needed to
finish out the line after the manufacturers name has been output.

num_part_no_chars - current number of characters in part number
just read from cdf.

Variables Used in Item Description Fill In Loop

string continue_item_input - perpetuates main loop which will
output item description text.

string current_item_line - current line number for which text will
be entered. NOTE this variable is reset to 1 every time an
additional item screen is pulled up.

- 36- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

string current_item_line_from_cdf - current line have read from
cdf (max 48).

int on_first_item_screen - indicates if we are on the first item
description screen. If so, then max item lines to enter will be 6.

int max_lines_on_1st_item_screen - 6.

int max_lines_on_other_item_screen - 14.

string num_line_no_chars - Number of characters in the item desc
line being output.

string row_on - line number after next item line has been input.

string col_on - column number cursor will be on after next item
line input.
 29 on first screen
 23 on subsequent screens

string response_str - string to look for after an item description line
has been input.

string item_screen_count - max 3 additional item screens

ENVIRONMENT

$ECLIB must be set. See FILES

FILES

$ECLIB/gatewaylog File where gateway puts log
messages

$ECLIB/coredir Directory where gateway puts
core dumps

/etc/.authlist File containing encrypted
password for the BCAS
account specified with in the
-l option.

/home/bcas/item-upload-record Diagnostic gateway output
for all item upload
transactions is placed in this
file

/tmp/<month>-<day>-<year>-<hr>-<min>-<sec>-item-log
Holds summary information for BCAS interaction (e.g. 05-18-93-
17-22-10-item-log)

SEE ALSO

- 37- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASitemupload, qstat, qstatus, selitemcdf, cdf_check, errtomgr,
errtouser, bcasprocs_m4, parsefields_m4, bcashdr_m4

NAME

selitemcdf

SYNOPSIS

cat <item_cdf_file> |selitemcdf

DESCRIPTION

Outputs specified items CDF parameters to stdout.

INTERNAL DESCRIPTION

names array sets up legal CDF parameters to be expected in CDF
file. Each line in the CDF file is examined. If data is detected for a
parameter, it is output to stdout.

SEE ALSO

upload_bcas_item_desc_cron, upload_cancel_award_cron,
cdf_check

NAME

itemerrtouser

SYNOPSIS

<message> | itemerrtouser <users>

DESCRIPTION

itemerrtouser reads stdin and directs all data found there into a
mail message and forwards that message to the indicated users.

SEE ALSO
cancelerrtouser, errtomgr, upload_bcas_item_desc_cron,
upload_cancel_award_cron

- 38- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

1.6 BCAS Cancel Award Upload

Source files:

upload_bcas_cancel_award_cron, BCAScancelaward, errotmgr,
cancelerrtouser, selcancelcdf

Utilities used:

qstatus, qpop, qadditem, cdf_check

NAME

upload_bcas_cancel_award_cron

SYNOPSIS

upload_bcas_cancel_award_cron

DESCRIPTION

Any time a purchase order is canceled by a buyer using the
GATEC application, the cancellation information is uploaded back
t o B C A S v i a t h e B o u r n e S h e l l s c r i p t
upload_bcas_cancel_award_cron. When award cancellation is
committed by a buyer, the GATEC application writes a CDF file
containing the cancellation details (obtained from the cancellation
screen) and places that file on the bcascancel queue. An 850 and
836 CDF are also generated and their names are placed on the
bcascancel queue at this time. upload_bcas_cancel_award_cron
takes the cancel CDF filenames off this queue (using the qpop
utility), insures the data in them is correct (using selicancelcdf and
cdf_check), then passes the filename to the gateway script
BCASicancelaward. BCAScancelaward updates BCAS with the
cancellation information.

INTERNAL DESCRIPTION

upload_bcas_cancel_award_cron makes use of gateway script
BCAScancelaward to upload the contents of cancel CDF files
(whose filenames reside on the bcascancel queue) back to BCAS.

After setting up file aliases and insuring that another version of
itself is not running, upload_bcas_cancel_award_cron sets up its
own environment, then makes use of qstatus to insure the bcasitem
item queue is operational. At this point the main loop is entered

- 39- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

where the names of CDF files to be processed are repeatedly
popped off the bcascancel queue via the qpop utility. After a check
the integrity of the information popped off the queue (i.e. valid key
and data), the existence of the CDF file is confirmed. Next, the Perl
scripts selcancelcdf and cdf_check are used to check to syntax of
specified fields in the file. If the syntax checks are passed,
BCASccancelaward is called with the name of the CDF file whose
data is to be uploaded to BCAS.

After BCAScancelaward execution a grep is made of its output. If
the keywords "award cancel succeeded" are detected, the
corresponding 850CDF is sent to the outbound queue for
generation of an X12 850 cancellation, then the name of the next
file to process is popped off the queue. If the success string is not
found, then a check is made to determine if more than three
consecutive errors have occurred, if so the cron script is stopped. If
the error count is less than three, a check is made to determine
whether BCAScancelaward has recommended requeuing the file. If
so (and it has not been requeued once), the file is requeued,
otherwise a check is made to see whether the BCAS failure was
because of a disconnect. If this was the case the file is requeued
and the next file is processed--otherwise the troubled file will not
be requeued and the next file will be examined by popping the
bcascancel queue.

Processing (for non error situations) continues until the bcascancel
queue is empty. Bourne Shell scripts cancelerrortouser, and
errtomgr are used to report errors to the gatec manager.

TESTING

Developing a test fixture for this software is very straightforward.
The following error conditions are detected:

lockfile exists (version of upload_bcas_cancel_award_cron
already running)

cannot touch lockfile

cannot touch summary file

qstatus unknown exit error

queue not up

queue not empty

cdf filename null

- 40- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

cdf file does not exist

grammar error in CDF file

unable to send 850 CDF out to outbound queue

more than three consecutive errors detected in upload

REQUEUE message from BCAScancelaward detected

DISCONNECT message from BCAScancelaward detected

failed requeue

To make sure each condition is handled correctly, each error is
made to occur, then the output results are analyzed.

FILES

/home/bcas/$LOCKFILE Lock file
$HOME/set_ecedi_env Sets gateway env vars

/home/bcas/cancel_award_trace A summary of all cancel
uploads is placed in this file.

/home/bcas/cancel_award_errors A summary of all cancel
errors is placed in the file

cancel_award_record Diagnostic gateway output
for all cancel transactions is
placed in this file.

/home/bcas/que/bcascancel.dat Used to manage bcascancel
queue

/home/bcas/que/bcascancel.idx Used to manage bcascancel
queue

SEE ALSO

BCAScancelaward, qstat, qstatus, selcancelcdf, cdf_check,
errtomgr, errtouser,, bcasprocs_m4, parsefields_m4, bcashdr_m4

- 41- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

NAME

BCAScancelaward

SYNOPSIS

BCAScancelaward -t timeout -l BCASaccount <input cdf
file>

DESCRIPTION

BCAScancelaward navigates BCAS menus to arrive at the
MODIFICATION ACTION screen. Next, it places the cancel
details onto this screen as well as the MODIFICATION RESULT,
and NARRATIVE screens. If the cancellation information was
successfully uploaded to BCAS, the associated 850 CDF file is
placed on a printer queue known as "outbound", (via lpr
-Poutbound <filename>). where is will be subsequently processed
by the outbound script on the Transport Machine. The 836 CDF is
not used in this application.

INTERNAL DESCRIPTION

The BCAScancelaward gateway script takes an item description
CDF file (format described later in this description) and uploads its
contents into BCAS. This document is meant to be used in tandem
with the comments which are in the BCAScancelaward file.

After setting up the output log files, BCASitemupload calls
function parsefields to read in the content of the cancel description
CDF file (which is specified to BCAScancelaward as the 5th
parameter on the execute line). In order for parsefields to work,
variable names identical to those of the variable names specified in
the CDF file must be declared in BCAScancelaward, so those
variables may be correctly assigned with their respective data.
Once this is accomplished, an attempt is made to connect to the
WANG. If this is successful, the function bcaslogin is used to enter
BCAS.. Next the BCAS screens are navigated via use of the pfkey
function to reach the modification action screen. On entry to each
new screen, checks are made to insure the appropriate responses
are being made by BCAS via the search for expected keywords in
the term statements preceding the calls to the pfkey functions. If at
any time erroneous responses are detected, the function walk_out
is used to mail a transcript record of the screen interactions (up to
the point of error) to the gatecmgr for analysis.

When the modification action screen is reached the following data
is taken from the input CDF and input to that BCAS screen:

- 42- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

award piin

supplemental piin

activity number

buyer code

modification reason

effective date

Final/Temp/Draft

contractor sign

number of copies

suspense date

cancel order entirely

cancel prs to customer

reopen prs

order statement one

order statement two

order statement three

order statement four

order statement five

order statement six

order statement seven

order statement eight

order statement nine

order statement ten

special prep

reopen prs

- 43- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

For these parameters a check is made to see whether the data is
actually specified in the CDF; if so, the data is sent to BCAS,
otherwise a horizontal tab is entered to get to the next data entry
point. Regardless, a check is made (via a term statement) to make
sure the screen cursor is in the next expected position after the
input of the data or the tab.

Once the data on the screen is entirely entered, it is sent to BCAS
for processing. Many error can be detected by BCAS at this point;
specifically,

award piin not loaded

item delivered cannot cancel

field cannot be blank

improper buyer id

1st character not alpha

2nd character not 1-9

3rd character not alpha

invalid modification reason

invalid date input

invalid month input

must use D, F, or T (for selection of Draft, Final, or Temp)

contractor sign should be N when T used

field must be Y or N

since contractor sign was no this field should be blank

since contractor sign was yes, this field should be ALL or 1-6

since draft suspense dat should be specified

suspense date must be input

Y, N, or spaces need to be used for cancel/reopen prs fields

invalid order statement used

- 44- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

cancel prs customer and with reopen prs customer cannot be the
same

If the data are accepted and the requisition is not being reopened,
the modify order level data screen comes up next. Nothing is
actually done on this screen except to move to the modification
result screen where the narrative information is input (sections c, d,
and the actual narrative).

Input of the narrative first requires that the length of the narrative
to be accessed, this is done by using get_next_narr_line to see how
many lines the narrative spans. This can be somewhat tricky since
the narrative can have blank lines in it. The algorithm keeps track
of where the last text line was, before the final blank lines are
detected preceding the end of narrative. Once this is calculated the
lines are input one at a time, again using get_next_narr_line to
access the narrative text. After the narrative is input, the cancel is
committed.

TESTING

Developing a text fixture for BCAScancelaward, would require a
series of tests which insure that all error conditions nominally
encountered for cancel award are handled correctly. In addition to
the error conditions mentioned above, other error conditions which
might occur include,

attempt to mail error message failed

error deleting file

illegal cdf file name

error from parsefields routine

connection refused

on unexpected BCAS screen

error getting correct date

unable to go to BCAS MENU screen

unable to go to CONTRACT ADMINISTRATION screen

unable to go to MODIFICATION MENU screen

unable to go to MODIFICATION ACTION screen

- 45- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

unsuccessful input of award piin

unsuccessful input of supplemental piin

unsuccessful input of activity number

unsuccessful input of buyer code

unsuccessful input of modification reason

unsuccessful input of effective date

unsuccessful input of Final Temp or Draft

unsuccessful input of contractor sign

unsuccessful input of number of copies

unsuccessful input of suspense date

unsuccessful input of cancel entirely

unsuccessful input of cancel prs to customer

unsuccessful input of reopen prs

unsuccessful input of order statement one

unsuccessful input of order statement two

unsuccessful input of order statement three

unsuccessful input of order statement four

unsuccessful input of order statement five

unsuccessful input of order statement six

unsuccessful input of order statement seven

unsuccessful input of order statement eight

unsuccessful input of order statement nine

unsuccessful input of order statement ten

unsuccessful input of special preparation

did not reach begin narrative screen

- 46- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

did not reach description of amendment screen

could not reach c in supplemental narrative screen

could not reach d in supplemental narrative screen

could not reach begin narrative section

did not make it to next narrative line

To make sure each condition is handled correctly, each error is
made to occur, then the output results can be verified.

- 47- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCAS Cancel Award CDF File Format

An example of a cancel CDF is shown below,

%Xbegin
%Xpurpose cancel award upload
%Xfilename CANCEL AWARD CDF
%Xdestination_host gatec.dui
%Xversion 2.4
%Xdate 93 12 15
%award_piin 94M6132
%supp_piin
%activity_no
%cac G1D
%mod_reason W
%effective_date 93DEC15
%f_t_d F
%contractor_signs N
%number_of_copies
%suspense_date
%cancel_entirely Y
%cancel_prs_cust N
%with_reopen_prs N
%order_statement01
%order_statement02
%order_statement03
%order_statement04
%order_statement05
%order_statement06
%order_statement07
%order_statement08
%order_statement09
%order_statement10
%special_prep N
%new_solit_number
%contract_number
%narrative01 1. SUBJECT ORDER IS HEREBY CANCELLED IN ITS
%narrative02 ENTIRETY AS IT WAS AWARDED IN ERROR.
%narrative03
%narrative04 2. AS A RESULT OF THE ABOVE MODIFICATION, THE
%narrative05 TOTAL AMOUNT IS DECRASED FROM $43.47 TO $0.00
%narrative06 FOR A TOTAL DECREASE OF $43.47.
%narrative07
%narrative08
%narrative09
%narrative10
%narrative11
%narrative12
%narrative13
%narrative14

- 48- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

%narrative15
%narrative16
%narrative17
%narrative18
%narrative19
%narrative20
%narrative21
%narrative22
%narrative23
%narrative24
%narrative25
%narrative26
%narrative27
%narrative28
%narrative29
%narrative30
%narrative31
%narrative32
%no_reopen_cr M
%w_reasons
%Xend

- 49- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASitemupload Variable Definitions

Global Variables used as Returned Parameters from Procedures

current_narrative_line - returned by procedure get_next_line. Will contain the next narrative line
from the CDF file.

Global Constants

string _me - Inites gateway script (GW) for error message output.

Variables Used by Procedure Parsefields to Hold Cancel CDF File Contents

string Xbegin - CDF related.
string Xpurpose - CDF related.
string Xfilename - CDF related.
string Xdestination_host - CDF related.
string Xversion - CDF related.
string Xdate - CDF related.
string award_piin - The award piin associated with the RFQ
string supp_piin - Normally not used.
string activity_no - Normally not used.
string cac - The buyer code.
string mod_reason - (a - z --- see BCAS manual)
string effective_date - Current date
string f_t_d - Whether this cancellation is in final, temporary, or draft form.
string contractor_signs - Whether the contractor whose award is being canceled needs to sign

the form.
string number_of_copies - Number of printed copies of the cancellation to generate.
string suspense_date - Need to specify for temporary or draft.
string cancel_entirely - Whether the entire order is to be canceled t.
string cancel_prs_cust -
string with_reopen_prs - Is RFQ to be re-opened?
string order_statement01 - Normally not used.
string order_statement02 - Normally not used.
string order_statement03 - Normally not used.
string order_statement04 - Normally not used.
string order_statement05 - Normally not used.
string order_statement06 - Normally not used.
string order_statement07 - Normally not used.
string order_statement08 - Normally not used.
string order_statement09 - Normally not used.
string order_statement10 - Normally not used.
string special_prep - Any special preparation required.
string new_solit_number - If old RFQ is to be re-opened it needs an new RFQ number.
string contract_number - Need to specify GSA contract number of award canceling was

a GSA award.
string narrative01 - Narrative describing details of cancellation.
string narrative02 - Narrative describing details of cancellation.

- 50- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

string narrative03 - Narrative describing details of cancellation.
string narrative04 - Narrative describing details of cancellation.
string narrative05 - Narrative describing details of cancellation.
string narrative06 - Narrative describing details of cancellation.
string narrative07 - Narrative describing details of cancellation.
string narrative08 - Narrative describing details of cancellation.
string narrative09 - Narrative describing details of cancellation.
string narrative10 - Narrative describing details of cancellation.
string narrative11 - Narrative describing details of cancellation.
string narrative12 - Narrative describing details of cancellation.
string narrative13 - Narrative describing details of cancellation.
string narrative14 - Narrative describing details of cancellation.
string narrative15 - Narrative describing details of cancellation.
string narrative16 - Narrative describing details of cancellation.
string narrative17 - Narrative describing details of cancellation.
string narrative18 - Narrative describing details of cancellation.
string narrative19 - Narrative describing details of cancellation.
string narrative20 - Narrative describing details of cancellation.
string narrative21 - Narrative describing details of cancellation.
string narrative22 - Narrative describing details of cancellation.
string narrative23 - Narrative describing details of cancellation.
string narrative24 - Narrative describing details of cancellation.
string narrative25 - Narrative describing details of cancellation.
string narrative26 - Narrative describing details of cancellation.
string narrative27 - Narrative describing details of cancellation.
string narrative28 - Narrative describing details of cancellation.
string narrative29 - Narrative describing details of cancellation.
string narrative30 - Narrative describing details of cancellation.
string narrative31 - Narrative describing details of cancellation.
string narrative32 - Narrative describing details of cancellation.
string no_reopen_cr - If RFQ not to be re-opened must specify a reason

J - Cancel per customer request
K - Unilaterally terminated
M - Vendor refuses to effect terms and conditions of order.

string w_reasons
string Xend

File I/O

string lname - Holds log on name parameters specified on BCAScancelaward run line

string bcasSystem - Holds name of BCAS system

string log_fname - File name for cancel log file

string fname - File name of input CDF file.

- 51- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

string timeout - Holds time out parameter specified on BCAScancelaward run line.

file recordpipe - i/o channel for file with name bcas_cancel_award_record. A detailed transcript
record kept in /home/bcas directory.

file logpipe - i/o channel for file with name of form <month>-<day>-<year>-<hr>-<min>-<sec>-
cancel-log (e.g. 05-18-93-17-22-10-item-log) hold summary information for BCAS interaction.
Kept in /tmp directory.

file input - i/o channel for input CDF file.

Variables Used to Ascertain Length of Narrative Line

int firstBlank - (1-currently processing group of 1 or more blank lines).

int lineBlankStarted - line that the current set of blanks started on.

string lastLine - the previous line read from the narrative.

int noBlanks - current number of consecutive blank lines encountered.

string current_narrative_line - increments index passed to get_next_narr_line to get next line.

Variables Used In Output of Narrative Line

string response_str - Holds expected cursor position after input of current narrative line to BCAS.

ENVIRONMENT

$ECLIB must be set. See FILES

FILES

$ECLIB/gatewaylog File where gateway puts log messages
$ECLIB/coredir Directory where gateway puts core dumps
/etc/.authlist File containing encrypted password for the

BCAS account specified with in the -l option.
/home/bcas/cancel_upload_record Diagnostic gateway output for all item upload

transactions is placed in this file
/tmp/<month>-<day>-<year>-<hr>-<min>-<sec>-cancel-log
Holds summary information for BCAS interaction (e.g. 05-18-93-17-22-10-cancel-log)

SEE ALSO

BCAScancelaward, qstat, qstatus, selcancelcdf, cdf_check,
errtomgr, bcasprocs_m4, parsefields_m4, bcashdr_m4

- 52- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

NAME

selcancelcdf

SYNOPSIS

cat <cancel_cdf_file> |selcancelcdf

DESCRIPTION

Outputs specified cancel CDF parameters to stdout.

INTERNAL DESCRIPTION

names array sets up legal CDF parameters to be expected in CDF
file. Each line in the CDF file is examined. If data is detected for a
parameter, it is output to stdout.

SEE ALSO

upload_bcas_item_desc_cron, upload_cancel_award_cron,
cdf_check

NAME

cancelerrtouser

SYNOPSIS

<message> | cancelerrtouser <users>

DESCRIPTION

cancelerrtouser reads stdin and directs all data found there into a
mail message and forwards that message to the indicated users.

SEE ALSO

itemerrtouser, errtomgr, upload_bcas_item_desc_cron,
upload_cancel_award_cron

- 53- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

1.7 Support Software for Upload/Download Crons

NAME

errtomgr

SYNOPSIS

<message> | errtomgr [<users>]

DESCRIPTION

errtomgr reads stdin and directs all data found there into a mail
message and forwards that message to thegatecmgr as well as to
other users (if they are specified).

OPTIONS

<users> Other users mail message should go to.

SEE ALSO

c a n c e l e r r t o u s e r , i t e m e r r t o u s e r , e r r t o m g r ,
upload_bcas_item_desc_cron, upload_cancel_award_cron

NAME

errtouser - mail stdin to gatecmgr, and optionally to some user.

SYNOPSIS

errtouser [subject]

DESCRIPTION

errtouser reads from stdin, and mails all input to the user gatecmgr,
setting the Subject: line to subject if it is specified, else setting the
SUBJECT: line to none.

if a line of the form

%buyer_code user

exists in stdin, mail is also sent to user.

- 54- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SEE ALSO

putuploads_cron(1)

NAME

errtomgr - mail stdin to gatecmgr

SYNOPSIS

errtomgr [subject]

DESCRIPTION

errtomgr reads from stdin, and mails all input to the user gatecmgr,
setting the Subject: line to subject if it is specified.

NAME

cdf_check - syntax check a cdf file

SYNOPSIS

cdf_check [filename . . .]

DESCRIPTION

cdf_check checks that files contain valid cdf regular expressions. If
no files are specified, cdf_check assumes standard input. cdf_check
exits 1 if there are any syntactically incorrect regular expressions,
else it exits 0.

FILES

~gatec2/etc/cdf_regexp
File of cdf regular expressions.

SEE ALSO
cdf_regexp(5), perl(1)

- 55- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

NAME

cdf_regexp - file of valid regular expressions for cdf files.

DESCRIPTION

cdf files contain name-value pairs. For each name, cdf_regexp
contains a regular expression, in Perl format. This is used by the
program cdf_check to verify that a cdf file contains correct values.
Currently this file is used only for validating cdf files that contain
information to be used to make an award, upload an item
description, or cancel an award on the Wang BCAS system.

SEE ALSO

cdf_check(1), cdf_regexp_big(5), perl(1)

- 56- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

NAME

regcomp, regexec, regsub, regerror - regular expression handler

SYNOPSIS

#include <v8regexp.h>

regexp *regcomp(exp)
char *exp;

int regexec(prog, string)
regexp *prog;
char *string;

regsub(prog, source, dest)
regexp *prog;
char *source;
char *dest;

regerror(msg)
char *msg;

DESCRIPTION

These functions implement egrep(1)-style regular expressions and
supporting facilities.

Regcomp compiles a regular expression into a structure of type
regexp, and returns a pointer to it. The space has been allocated
using malloc(3) and may be released by free.

Regexec matches a NUL-terminated string against the compiled
regular expression in prog. It returns 1 for success and 0 for failure,
and adjusts the contents of prog's startp and endp (see below)
accordingly.

The members of a regexp structure include at least the following
(not necessarily in order):

char *startp[NSUBEXP]; char *endp[NSUBEXP];

where NSUBEXP is defined (as 10) in the header file. Once a
successful regexec has been done using the regexp, each startp-
endp pair describes one substring within the string, with the startp
pointing to the first character of the sub-string and the endp
pointing to the first character following the substring. The 0th
substring is the substring of string that matched the whole regular

- 57- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

expression. The others are those substrings that matched
parenthesized expressions within the regular expression, with
parenthesized expressions numbered in left-to-right order of their
opening parentheses.

Regsub copies source to dest, making substitutions according to the
most recent regexec performed using prog. Each instance of `&' in
source is replaced by the substring indicated by startp[0] and
endp[0]. Each instance of `\n', where n is a digit, is replaced by the
substring indicated by startp[n] and endp[n].

To get a literal `&' or `\n' into dest, prefix it with `\'; to get a literal
`\' preceding `&' or `\n', prefix it with another `\'.

Regerror is called whenever an error is detected in regcomp,
regexec, or regsub. The default regerror writes the string msg, with
a suitable indicator of origin, on the standard error output and
invokes exit(2). Regerror can be replaced by the user if other
actions are desirable.

REGULAR EXPRESSION SYNTAX

A regular expression is zero or more branches, separated by `|'. It
matches anything that matches one of the branches.

A branch is zero or more pieces, concatenated. It matches a match
for the first, followed by a match for the second, etc.

A piece is an atom possibly followed by `*', `+', or `?'. An atom
followed by `*' matches a sequence of 0 or more matches of the
atom. An atom followed by `+' matches a sequence of 1 or more
matches of the atom. An atom followed by `?' matches a match of
the atom, or the null string.

An atom is a regular expression in parentheses (matching a match
for the regular expression), a range (see below), `.' (matching any
single character), `^' (matching the null string at the beginning of
the input string), `$' (matching the null string at the end of the input
string), a `\' followed by a single character (matching that
character), or a single character with no other significance
(matching that character).

A range is a sequence of characters enclosed in `[]'. It normally
matches any single character from the sequence. If the sequence
begins with `^', it matches any single character not from the rest of
the sequence. If two characters in the sequence are separated by `-',
this is shorthand for the full list of ASCII characters between them
(e.g. `[0-9]' matches any decimal digit). To include a literal `]' in
the sequence, make it the first character (following a possible `^').

- 58- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

To include a literal `-', make it the first or last character.

AMBIGUITY

If a regular expression could match two different parts of the input
string, it will match the one which begins earliest. If both begin in
the same place but match different lengths, or match the same
length in different ways, life gets messier, as follows.

In general, the possibilities in a list of branches are considered in
left-to-right order, the possibilities for `*', `+', and `?' are
considered longest-first, nested constructs are considered from the
outermost in, and concatenated constructs are considered leftmost-
first. The match that will be chosen is the one that uses the earliest
possibility in the first choice that has to be made. If there is more
than one choice, the next will be made in the same manner (earliest
possibility) subject to the decision on the first choice. And so forth.

For example, `(ab|a)b*c' could match `abc' in one of two ways. The
first choice is between `ab' and `a'; since `ab' is earlier, and does
lead to a successful overall match, it is chosen. Since the `b' is
already spoken for, the `b*' must match its last possibility-the
empty string-since it must respect the earlier choice.

In the particular case where no `|'s are present and there is only one
`*', `+', or `?', the net effect is that the longest possible match will
be chosen. So `ab*', presented with `xabbbby', will match `abbbb'.
Note that if `ab*' is tried against `xabyabbbz', it will match `ab' just
after `x', due to the begins-earliest rule. (In effect, the decision on
where to start the match is the first choice to be made, hence
subsequent choices must respect it even if this leads them to less-
preferred alternatives.)

SEE ALSO

egrep(1), expr(1)

DIAGNOSTICS

Regcomp returns NULL for a failure (regerror permitting), where
failures are syntax errors, exceeding implementation limits, or
applying `+' or `*' to a possibly-null operand.

HISTORY

Both code and manual page were written at U of T. They are
intended to be compatible with the Bell V8 regexp(3), but are not
derived from Bell code.

- 59- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BUGS

Empty branches and empty regular expressions are not portable to
V8. The restriction against applying `*' or `+' to a possibly null
operand is an artifact of the simplistic implementation.

Does not support egrep's newline-separated branches; neither does
the V8 regexp(3), though.

Due to emphasis on and simplicity, it's not strikingly fast. It does
give special attention to handling simple cases quickly.

1.8 Gateway Support Software

NAME

bcaslogin, bcaslogout, checkresp, finis, pfkey, substr, fixfield,
cmdargs, expresslogout - General WANG BCAS Gateway
procedures

SYNOPSIS

call bcaslogin(account, password, btimeout, me)

call bcaslogout

call checkresp(resp)

call finis

call pfkey(choice)

call substr(s, start, end)

call fixfield(field, len)

call cmdargs(switchstr)

call expresslogout

DESCRIPTION

bcaslogin takes four arguments: the Wang userid account, the
password of that userid, a btimeout in seconds that specifies how
long the program is to wait for prompts, and some string me that
will appear in any error messages the program generates.

- 60- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

bcaslogin is called after a successful Gateway connect has been
done, and performs a login (via telnet) to the Wang system.
bcaslogin will leave you at either the SYSTEMS
ADMINISTRATORS menu, the Wang VS Command Processor
menu, or the VS OFFICE menu, depending on which menu the
Wang System Administrator has set up for user account.

On success, the global variable ok is set to TRUE, and the global
variable Current_screen is set to one of SAscreen, CPscreen, or
VSscreen.

bcaslogout logs out from the Wang from any of the screens
SAscreen, CPscreen, VSscreen, RUNscreen, DEBUGscreen, or
GETPARMscreen.

checkresp takes one argument, the string resp, and echoes it to
stdout.

 inis performs an exit from the Gateway program.

pfkey takes one argument choice, which is either a number >from 1
to 32, or the string "HELP". It sets the global variable _string to the
equivalent WANG function key.

substr extracts a substring from s starting at character start and
ending at character end. The substring is placed in the global
variable _string.

fixfield takes the string argument field and truncates it to less than
or equal to len characters. If the resulting field is less than len
characters in length, then a horizontal tab is added to the end. The
resulting fields is placed in the global variable _string.

cmdargs processes command line arguments and sets the global
variables ok, argc, arg, BCASaccount, BCASpassword,
BCASsystem, _timeout, stock_file. In addition, if switchstr is
setCDFfilelist, it sets CDFfilelist, or if switchstr is set- program, it
sets program.

expresslogout calls bcaslogout, then calls finis.

 SEE ALSO

BCASrunproc(1), BCASupload(1), BCASitemupload(1),
BCAScancelaward(1)

- 61- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

1.9 Multi-User Queue Public Domain Software

The bcasupload, bcasitem, and bcascancel queues are implemented
with public domain software which is described below

NAME

q - A simple, multi-user queuing system based on the simple,
multi-user database library libdb.a.

SYNOPSIS

#include <q.h>

int queadditem(char *quename, char *key, char *data)

% qadditem quename key data

int quelist(char *quename);

% qlist quename

char *quepop(char *quename, char *key)

% qpop quename

char *quekeypop(char *quename, char *key)

% qkeypop quename key

int questatus(char *quename);

% qstatus quename

int quesetstatus(char *quename, int state)

% qsetstatus quename state

% qallstatus

DESCRIPTION

It's not really a queue, it's more like a collection of objects.

queadditem() a dds an item to the queue. It returns 0 on success, -1
if key already exists, or 1 if no such queue or any other error.

- 62- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

qadditem is the shell interface.

quelist() lists (to stdout) all the keys and items in the queue. It
returns 0 on success, 1 if no such queue

qlist is the shell interface.

quepop() returns the next item on the queue, or NULL if no more
items or no such queue. Removes the item from the queue. If key is
a non-null pointer, quepop() stores the key of the popped item in
key. There is no order to the records returned by quepop().

qpop is the shell interface. As quepop(), but displays key and data
to stdout. Returns 0, or 1 if no more items or no such queue.

quekeypop() fetches and deletes record from queue quename by
specifying its key. The return value is a pointer to the data that was
stored with the key, or NULL if record not found or no such queue.

qkeypop is the shell interface. As quekeypop(), but displays data
record to stdout. Returns 0, or 1 if record not found or no such
queue.

questatus() returns UP or DOWN (defined in q.h), or 1 if no such
queue.

qstatus is the shell interface. Prints quename, followed by UP or
DOWN, to stdout, and exits with a return status of 0, or 1 if
quename does not exist.

quesetstatus() sets the state of queue quename. state is either UP or
DOWN. Returns 0 on success, 1 on failure. Creates queue
quename if it doesn't exist.

qsetstatus is the shell interface.

qallstatus prints, for each queue that has been created, the
quename, followed by UP or DOWN

SEE ALSO

db(3),, tisp(3)

CAVEATS

Both key and data must be at least one byte long, and less
than 1024 bytes. See db(3).

NOTES

- 63- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

1. Written in C++ -- it might work under ANSI C (acc on the sun)

2. You'll need to set -I/ec-edi1/include for compiles.

3. You'll need to compile with the -Bstatic flag if using CC and
planning to run your program on one of the Wright- Patterson Suns
(they don't have the C++ shared libraries).

4. You'll need to set -L/ec-edi1/lib to search for the libraries, and
you'll need to load with the libraries -ltispq -ltispdb -ltisp.

5. For users of the queue "bcasupload", invoke as
q u e a d d i t e m (" b c a s u p l o a d " , c d f _ f i l e _ f o r _ u p l o a d ,
cdf_file_for_translation_to_850);

The queue software actually makes use of the following database
library utilities to implement the queue operations described above:

NAME

db_open, db_close, db_store, db_fetch, db_delete, db_rewind,
db_nextrec - simple database operations used by the q routines

SYNOPSIS

#include <db.h>

DB *db_open(const char *pathname, int oflag, int mode)

void *db_close(DB *db)

int db_store(DB *db, const char *key, const char *data, int
flag)

char *db_fetch(DB *db, const char *key);

int db_delete(DB *db, const char *key);

void db_rewind(DB *db);

char *db_nextrec(DB *db, char *key);

DESCRIPTION

These functions implement a simple, multi-user database library,
from W. Richard Stevens' "Advanced Programming in the UNIX

- 64- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Environment".

db_open() returns a pointer to a DB structure. If the DB structure
cannot be created, a NULL pointer is returned. db_open()opens or
create a database. The arguments are the same as open(2).
db_open() either creates a new database, or opens an existing
database. A database consists of pathname.idx, the index file, and
pathname.dat, the data file. oflag is used as the second argument to
open(2). mode is used as the third argument to open(2).

db_close() closes the database.

db_store() stores a record in the database. Returns 0 if OK, 1 if
record exists and flag DB_INSERT is specified, -1 if record doesn't
exist and flag DB_REPLACE is specified.

db_fetch() fetchs a record by specifying its key. The return value is
a pointer to the data that was stored with the key, or NULL if the
record was not found.

db_delete() deletes a record by specifying its key. Returns 0 if OK,
-1 if record is not found.

db_rewind() resets to first record.

db_nextrec() To go through the entire database, reading each
record in turn, first call db_rewind, then call db_nextrec to read
each sequential record. db_nextrec returns pointer to data if OK,
NULL on end of file. If key is a non-null pointer, db_nextrec stores
the key starting at that location. There is no order to the records
returned by db_nextrec.

SEE ALSO

tisp (3)

NAME

tisp

DESCRIPTION

Low level error handling library

SEE ALSO

- 65- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

q(1), db(1)

1.10 Compilation and Installation of Interface to Legacy System
Software

The makefile for the CVSROOT/src/wang directory is named
Makefile. Similarly named makefiles are found in
$CVSROOT/tisp, $CVSROOT/db, $CVSROOT/que, and
CVSROOT/narqdb/src/bin/readopr2. The following steps must be
taken to generate the Interface to Legacy System binaries and
scripts (note assumes LOCALLIB, LOCALINC, and CVSROOT
have been defined);

1. Start at $CVSROOT/tisp. make install creates libtisp.a. libtisp.a
is installed into LOCALLIB tisphdr.h is installed into LOCALINC.
This library contains generic low level error handling functions.
There are no regression tests. $CVSROOT/tisp is not GATEC-
specific. That is, it could be re-used.

2. $CVSROOT/db depends on tisp. make install creates libtispdb.a
libtispdb.a is installed into LOCALLIB db.h is installed into
LOCALINC db.3 is installed into LOCALMAN There is a little
test program. To run it, "make t4; ./t4" There are no formal
regression tests. $CVSROOT/db is not GATEC-specific.

3. $CVSROOT/que depends on db. make install creates libtispq.a
libtispq.a is installed into LOCALLIB q.h is installed into
LOCALINC q.3 is installed into LOCALMAN make install also
creates 7 binaries. These binaries (and qlocal.h) should be pulled
out of this make tree and placed elsewhere. The 7 binaries,
qsetstatus, qadditem, qlist, qstatus, qallstatus, qpop, and qkeypop
are installed into LOCALBIN. There are no formal regression
tests. libtispq.a is not GATEC-specific. The binaries (and qlocal.h)
are GATEC-specific.

4. $CVSROOT/narqdb/src/bin/readopr2 depends on libnarq,
libnora, and $NARQDB/include. libnarq and libnora are not
d i scussed he re . r eadopr2 a l so depends on
../../../../dui/src/cdfdb/tempfile.o, which is currently known as
$CVSROOT/dui/src/cdfdb/tempfile.o. make install installs one
binary, readopr2, into LOCALBIN. There is a minimalist
regression test. Run it with "make test". If it returns 0 errors,
you've probably set up the database correctly. Source tree.
readopr2 is GATEC-specific.

5. $CVSROOT/wang depends on readopr2. make install installs
the following binaries

- 66- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

into LOCALBIN:

BCAScancelaward - Gateway script to upload canceled
purchase orders to BCAS.

BCASitemupload - Gateway script to upload item
description changes to BCAS.

BCASrunproc - Gateway script to run a WANG procedure.

BCASupload - Gateway script to upload awards (purchase
orders).

cancelerrtouser - Bourne shell script used to send cancel
award errors to specified users.

cdf_check - Perl script that uses the regular expressions
defined in /home/gatec2/etc/cdf_regexp to grammatically
check content of award upload, item upload, and cancel
award upload CDFs.

downloadch - Perl script used by getwangfiles to ftp files
from WANG to a UNIX machine.

errtomgr - Bourne shell script used by _cron files to send
errors to the gatecmgr.

errtouser - Bourne Shell script used by _cron files to send
error information to specified users.

get_UTNNumber_from_cdf - Perl script used by
putuploads_cron to obtain UTN number from award CDF.

get_piin_from_cdf - Perl script used by putuploads_cron to
obtain piin number from upload CDF

getopr_bsp_cron3 - Bourne shell script run as cron to
download new RFQs into GATEC database (makes use of
getwangfiles and BCASrunproc).

getstmntship_cron - Bourne shell script run as cron to load
Shipping, Account, and Statement tables (makes use of
getwangfiles and BCASrunproc).

getwangfiles - Bourne shell script used by
getopr_bsp_cron3 and getstmntship_cron to ftp BCAS data
from WANG to SPARC database machine

iitemerrtouser - Bourne shell script used to send item
upload error information to specified users.

- 67- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

putuploads_cron - Bourne shell script run as cron to upload
award information to BCAS. Makes use of BCASupload,
seluploadcdf and the "C" queue routines (see below).

selcancelcdf - Perl script which writes all non blank fields
in a cancel CDF to standard out.

selitemcdf - Perl script which writes all non blank fields in
an item CDF to standard out.

seluploadcdf - Perl script which writes all non blank fields
in an upload CDF to standard out.

setUTN_aw_to_cl - PL/SQL script used by
putuploads_cron to change a state of an acquisition from
AWARDED to CLOSED.

setUTN_ignoreack - PL/SQL script used by
putuploads_cron to tell database to ignore acknowledgment
checking.

upload_bcas_cancel_award_cron - Bourne shell script run
as cron that uploads cancel award information to BCAS.
Makes use of BCAScancelaward, and selcancelcdf.

upload_bcas_item_desc_cron - Bourne shell script run as
cron that uploads item description information to BCAS.
Makes use of BCASitemupload and selitemcdf.

Other Miscellaneous Executables

close - Bourne shell script to close all OPEN RFQs.

daily - Bourne shell script used to close RFQ's in GATEC
database after they have been open for a designated period
of time. It is run as a cron

downLoadPiins - Bourne shell script used to add new
award piins to GATEC database.

downloadbsp - Bourne shell script used to add new buyers
to GATEC database.

get_login_info - Uses ASCII file (login) in
/home/gatec2/etc to obtain password for access to
ORACLE/GATEC database under SQLPLUS.

sh_get_login_info - Uses ASCII file (login) in
/home/gatec2/etc to obtain password for access to

- 68- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

ORACLE/GATEC database under SQLPLUS.

insertHolidays - Bourne shell script used to add Holiday
information to GATEC database

Note cdf_regexp is installed into LOCALETC. Seven man
pages are installed into LOCALMAN. There is one
minimal regression test. To run it, su to gatecmgr, and type
"make putupload_cron_test".

All the wang code is GATEC-specific.

6. $CVSROOT/v8regexp make install creates libv8regexp.a.
libv8regexp.a is installed into LOCALLIB. v8regexp.h is installed
into LOCALINC v8regexp.3 is installed into LOCALMAN.
$CVSROOT/v8regexp is not GATEC-specific and can be re-used.

1.11 Miscellaneous Software

1.11.1 Acknowledgment Monitoring Software

NAME

ack_cron_pl - Look for 997 rejects and overdue 997s for X12
documents sent by the site.

SYNOPSIS

ack_cron_pl

DESCRIPTION

ack_cron_pl creates a list of 997s received for the current date that
report a rejection of a document the site has sent. It also creates a
list of X12 transactions the site has sent which have not been
acknowledged within the period of time defined in the table
UserManagerDefaults.

This list is mailed to the address stored in the NotificationAddress
column of the UserManagerDefaults table. In addition, notification
is sent to each buyer with the acqerr program.

Finally, the DocumentSent table is updated to indicate that

- 69- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

rejection warning or an overdue warning has been sent.

This program is typically run from cron, once a day, when no users
are on the system. It can take up to 30 minutes to run.

TABLES

UserManagerDefaults Contains email address of where to
send report

s_SendRejectWarning select-only view on DocumentSent,
FunctionalAck, Document

s_SendOverdueWarning select-only view on Document,
DocumentSent,
UserManagerDefaults,
FunctionalAck

u_SendRejectWarning update-only view on DocumentSent,
FunctionalAck

u_SendOverdueWarning update-only view on DocumentSent,
FunctionalAck,
UserManagerDefaults

SEE ALSO

acqerr(1), sh_get_login_info(1)

NAME

997CDFtoDB - insert a 997 X12 document into the database.

SYNOPSIS

997CDFtoDB

DESCRIPTION

997CDFtoDB reads from stdin. It reads a cdf file of type 997.
Typically, the file is generated by the Translator.

997CDFtoDB verifies that the cdf file is syntactically correct. If so,
it inserts the data into the database.

997CDFtoDB exits 0 if the data was successfully inserted, exits 1
if there is a syntax error in the cdf, and exits 2 if the database is
unavailable.

DATABASE TABLES

- 70- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Document
FunctionalAck

SEE ALSO

v8regexp(3), Connection(3N), Database(3N), Table(3N),
get_login_info(3), outline_wade(1)

Compilation/Installation of Acknowledgment
Monitoring Software

6. $CVSROOT/arc depends on an active, functioning database.
Make install installs ack_cron_pl into LOCALBIN.

There are regression tests here. Run them with "make test". These
tests can take over an hour if there are lots of 997's already in the
database.

ack_cron_pl is GATEC-specific.

See ack_cron_pl(1).
ack_cron_pl - Perl script used to look for newly rejected and
overdue documents.

acqerr - used by ack_cron and putuploads_cron to associate an
error message with an acquisition in the GATEC database.

Note: arc also contains a data model, using Rumbaugh's Object
Modeling Technique. This model sketches an alternative
implementation of X12 using a relational database. See arc/doc,
arc/schema, and arc/src.

9. $CVSROOT/dui/src/cdfdb/997CDFtoDB depends on v8regexp,
narq, and nora. xmkmf make Makefile make depend make
install997 installs 997CDFtoDB into LOCALBIN.

There is a regression test. To run it, type "make test997"

See 997CDFtoDB(1). An equivalent implementation of this

Sun Release 4.1 Last change: 2

OUTLINE_WADE(1) USER COMMANDS

- 71- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

OUTLINE_WADE(1)

program is oci997CDFtoDB.cc.

***************** Testing *****************

Ideally, every Makefile or Imakefile should have a test: target,
such that % make test would cause a reasonably complete
regression test to be run on all modules referenced in the Makefile.

In practice, readopr2, arc, and 997CDFtoDB are the only GATEC
modules I know of with a "% make test" regression test. There may
be others.

SEE ALSO
GATEC(1), db(3), q(3), v8regexp(3), getopr_bsp_cron3(1),
putuploads_cron(1), readopr2(1), 997CDFtoDB(1), ack_cron_pl(1)

- 72- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

- 73- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 2 Distributed User Interface (DUI) Software

The Distributed User Interface Software (located at
$CVSROOT/dui in the GATEC development environment)
includes the DUI toolkit used by both client and application to
communicate objects between the PC and SPARC machine, windui
application which implements display of these objects on a PC
running Windows 3.1, and the GATEC application itself. The Lead
Buyer and System Parameter client applications (like the GATEC
application) also use DUI. They are described in this section as
well

2.1 DUI Toolkit

 DUI is a client-server system for building platform- independent
user interfaces. It allows an application programmer to write a user
interface that can be displayed in any environment for which a DUI
client has been written. It also allows the application and user
interface to run on separate machines thereby distributing the user
interface processing.

 It was designed to separate the I/O needs of the application from
the display and formatting requirements of the user interface. This
greatly simplifies the task of the application programmer. It does
this by providing a set of simple tools describing the basic forms of
input and output an application requires to interact with a user.
Some of the basic tools are:

 - Form
a "screen" which will contain any number of the other tools as well
as a set of Command's that would operate on the data described in
the form.

 - Command
a way for the user to act on the data entered or selected on the
form.

 - Selection
a list of items from which the user can select one.

- 74- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 - Multi_Selection
 a list of items from which the user can select more than one.

 - Toggle
a switch that can be turned either on or off.

 - Field
a data entry field in which the user can enter one line of data.

 - Text
a data entry field in which the user can enter more than one line of
data.

 - Range
a range of values from which the user can select one.

 - Table
a data entry tool that allows the user to edit rows and columns in a
tabular format.

These tools are used by the application and implemented by a
"client". The client is a program that implements these tools for a
particular display environment. It is written once and can handle
any application that uses DUI. By separating it in this way the
ability for a single application to run on multiple display platforms
is provided.

2.1.1 Basic Architecture

The DUI system consists of three parts - an application, a server,
and a client. These three pieces function in the following ways:

Application

This is the piece that is written by a developer to perform whatever
its requirements specify (one of which is to provide a forms type
interface to an end user). It makes calls to the two DUI libraries
libdui_comm and libduit (see the CLASS HIERARCHY AND
LIBRARIES Section) in order to build its interface. It is executed
by the "server" process on request from the "client". It's executable
name always ends in ".dui". See the APPLICATION
PROGRAMMING GUIDE section for more about DUI application
programming.

2.1.1.1 Server

- 75- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

This is the executable that the client talks to at initial startup once a
communications pathway has been established. It resides on the
same machine as the application and responds to a request from the
client to start up an application. The client supplies the application
executable name (minus the ".dui") and a search path. Once the
application is started up the server terminates and the application
and client communicate directly (see COMMUNICATIONS
Section).

2.1.1.2 Client

This is the program that implements the toolkit elements for a
particular platform (e.g. XWindows, MS Windows, Macintosh). It
also makes use of the two DUI libraries but must port and make
extensions to them (see CODE GENERATION section) to
establish an appropriate communications path and implement the
display specifics for its platform. It initiates the communications
link and requests a particular application (by sending a control
object) (see COMMUNICATIONS Section). It then displays forms
(sent by the application) to the user and communicates the user
interaction back to the application. It does this until either side
elects to terminate.

2.1.2 Communications

The basis of the DUI system communications is the ability for the
client and the application to communicate shared objects across a
communications link. This involves establishing a link between the
client and the application and providing a "protocol" for
communicating "objects" back and forth between the two
processes. These are done as follows:

2.1.2.1 Communications link

DUI communications is done through C++ streams. There is a
class, Session (1), which is responsible for opening the streams. It
contains one input and one output stream. The client, application,
and server each contain one instance of a Session. The input and
output streams for the application and server are currently always
standard in and standard out respectively. The client on the other
hand must establish its input and output streams by whatever

- 76- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

communications channel is appropriate (e.g. sockets or serial line)
to make a connection to the server and attach to its standard input
and standard output. Once the client has established a connection
with the server an AppContol (1) object is passed to the server to
request a particular application, the server executes the named
application giving it its standard in and standard out and
terminates. This leaves the application and client communicating
directly. See the DETAILED WORKING EXAMPLE section for
an example of establishing a connection between a client an a
server.

2.1.2.2 DUI Protocol

The idea behind the DUI protocol is the sharing of class instances
by the client, server and application. So the protocol is basically an
ASCII representation of class instances and instance hierarchies.
The application, server and client simply send instance hierarchies
and modifications to individual instances in those hierarchies back
and forth to each other to maintain duplicate copies. Not all classes
are communicated, only those that describe user interface
elements. Each class that needs to be communicated can write its
data member onto a stream in a form which identifies its class,
instance and data. By the same token it can read itself in. There is a
class called Communication_Object (1) which is the base for all
classes that are communicated. Derived classes overload some of
its functions to write out and read in their specific data elements.
Each process keeps a global list of every instance created by either
side so modifications can be applied to the right instance. It does
this by overloading the new operator for all communicable classes.
In addition class structures on the client side can be different from
those on the application side in that the client can add more data
and function members to the original DUI class definition in order
to implement its display functionality. This is done without sub-
classing (See the CODE GENERATION Section). These
additional data members however are local to the client and are not
communicated to the application. The application can add local
(non communicated) data members by sub-classing off of the DUI
classes (See the DETAILED WORKING EXAMPLE and the
APPLICATION PROGRAMMING GUIDE Sections for more
details).

2.1.2.3 A Typical Session

The following is a short summary of what a typical

- 77- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

communications session is like for a DUI application:

The client starts. The client establishes a link to the server. The
client sends an AppControl (1) object to the server. The server
finds the named application and terminates leaving the application
and client communicating directly. The application creates a
DUI_Form(1) attaching other widgets to it (e.g. DUI_Field's, and
DUI_Command's) It then sends this instance hierarchy to the client
to be displayed. The client displays the form. The user interacts
with the form. The client communications the modifications the
user made to the form back to the application. The application acts
on the modifications possibly sending back another form. This
continues until either the client or the application sends an
AppControl object back signaling termination. Finally, both the
client and the application terminate. For an in depth example of
client-application interaction see the DETAILED WORKING
EXAMPLE Section.

2.1.3 DUI Class Hierarchy and Libraries

DUI consists of two class libraries, libdui_comm and libduit,
which are written in C++. The libraries and the classes they contain
are described below. In the class hierarchy descriptions indentation
denotes derivation (i.e. In the first diagram DUI_Form is derived
from DUI_View which is derived from DUI_Widget which is
derived from Communication_Object). For in depth explanations
of each of the classes see their individual documentation, and for
an explanation of their usage see the APPLICATION
PROGRAMMING GUIDE Section.

Libduit contains the DUI toolkit elements. These are the classes
that define Fields, Views, Commands etc.(i.e. user interface
widgets). They are all derived from DUI_Widget (1) which itself is
derived from Communication_Object (1). All of these classes can
be modified by the client using special include files (see CODE
GENERATION SECTION) which is the reason they are all
contained in one library. The following is the class hierarchy for
libduit (except Communication_Object which is contained in
libdui_comm):

 (Communication_Object)
 DUI_Widget
DUI_View
 DUI_Form
 DUI_Dialog
DUI_Component
 DUI_Command

- 78- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DUI_End_Command
 DUI_Toggle
 DUI_Range
 DUI_Field
DUI_Invisible_Field
 DUI_Text
 DUI_Group
 DUI_Label
 DUI_Selection
DUI_Multi_Selection
 DUI_Table

Libdui_comm contains all the rest of the classes that are used in
the DUI system which includes the classes used for
communications. Broken down by category they are:

 Classes used for communications:

 Filebuf_With_Audit
 Session
 ChannelBuf
 SocketBuf
 ConfigInfo
 Communication_Object
 AppControl

The next category describes Modifiers and Constraints these are
communicable classes that can be attached to DUI_Fields,
DUI_Texts, and Table_Columns. Modifiers and Constraints are
applied to the contents of their associated widgets after the user has
entered something. The modifiers allow the application
programmer to automatically change the contents before the
application receives the value (e.g. upcase the contents) and
constraints provide a way for the application to enforce a format
(i.e. Integer) on the contents. See Modifier (1), Constraint (1) and
the APPLICATION PROGRAMMING GUIDE section for more
information about their use.

Modifiers and Constraints:

 Communication_Object
 Modifier
 Justified
 Left_Justified
 Lower_Case
 Precision
 Right_Justified
 Truncated
 Unjustified
Upper_Case

- 79- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Constraint
 Date
Integer
 Mandatory
 Military_Date
 Numeric
Regular_Expression

The two remaining classes are utility classes. Table_Column
defines the functionality for columns in a DUI_Table widget and
STRING provides a generic string class. They are both
communicable classes.

 Communication_Object
 Table_Column
 STRING

2.1.4 Application Programming Guide

The following are things an application programmer needs to know
to create a DUI Application. See DETAILED WORKING
EXAMPLE for an example of a DUI application.

2.1.4.1 Beginning and Ending a session

The application programmer must call Session::begin() at the
beginning of her program and Session::end() at the end. These
functions setup and shut down the input and output streams and
send AppControl objects to confirm startup and initiate
termination.

2.1.4.2 Event Driven Programming

DUI Applications are event-driven. Forms are created that contain
components with functions attached to them. These functions are
callback function (see below). When a user modifies or elects a
particular component these functions are activated. The only
"event" is the modification of a component, so the contents of the
component should determine the action taken. (see Call Back
Functions below).

- 80- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.4.3 Creating Forms

The application should sub-class off of the DUI_Form class to
create the forms it requires. DUI_Form has one DUI_Component
member and one DUI_Command member. If the form requires
more than one component (which most do) then they should be
grouped under a DUI_Group and this should be used to set the
forms DUI_Component member. If the form needs more than one
command (which again most do) then group the DUI_Command's
under another DUI_Command (DUI_Command's can be used to
group other DUI_Commands) and set this top level
DUI_Command to the form's DUI_Command component. See
DUI_Form(1) and DUI_View(1) for more information about the
structure of a form. The components which can be attached to
DUI_Form's are as follows:

DUI_Field
This is a single line data entry field.

DUI_Group
This is a component which can contain other components. So this
is used to logically group other components. It can contain
DUI_Group's so it is recursive.

DUI_Toggle
This is a switch that can be turned on or off by the user.

DUI_Label
This is read only text.

DUI_Multi_Selection
This is a list of item from which the user can select more than one.

DUI_Selection
This is a list of item from which the user can select one.

DUI_Text
This is multiple line data entry field.

DUI_Range
This is a range of numeric values from which the user can pick
one.

DUI_Command
This is an action the user can take. It has callback (see below)
functions associated with it that are executed on the application

- 81- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

side when the user elects them.

DUI_End_Command
This is the same as DUI_Command except that it cause the view
on which it appears to go away after the user elects it.

DUI_Table
This is a complex widget that allows a user to edit rows and
columns in a tabular format. Its functions include adding and
deleting rows and changing the contents of columns. It uses the
utility class Table_Column(1) to handle column functions.

DUI_Dialog
This can not be attached to a form but is a stand alone form itself.
It is used primarily for simple dialogs (e.g. confirmation and error
messages), but can support more complex forms.

2.1.4.4 Modifiers and Constraints

Modifiers and constraints can be attached to DUI_Field's,
DUI_Text's and Table_Column's. They are used to automatically
modify and validate the contents of these components. Modifiers
are used if you want to change the format of the field but don't
need to make sure the user enters it that way. The modifiers are:

Justified, Left_Justified, Lower_Case, Precision, Right_Justified
Truncated, Unjustified, Upper_Case.

Constraints are used if the programmer needs to ensure that the
user enters data in a specific format the error processing is done on
the client side before it gets back to the application, and
DUI_Fields and Table_Columns will not allow their values to be
set to something that does not conform to their constraints. The
Constraints are:

Date, Integer, Mandatory, Military_Date, Numeric,
Regular_Expression

2.1.4.5 Callback Functions

Callback functions can be assigned to any of the descendants of
DUI_Component. A callback function is executed whenever a
modification to the component it refers to is received from the
client. In this way the case where the contents of one component

- 82- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

affects the contents of another can be handled. Usually
DUI_Command's are always given callbacks since they represent
actions the user can take, but there are cases where it is not
necessary. For Instance, if you want a command to simply end the
screen you are on, you would use a DUI_End_Command and not
give it a callback function. There are many examples of instances
where callback functions would be useful on other type of widgets,
one being exclusive toggles (where only one toggle can be selected
out of a group).

- 83- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.5 Code Generation

A significant portion of the code for the DUI libraries and DUI
clients are generated from formatted descriptions of the classes.
The tools used to generate the code are lex and yacc parsers and
c++ programs. There are two different categories of generation and
they are described below.

Code generation for communicable classes For all communicable
classes, the functions co_print(), co_parse() (i.e. the functions that
write out and read in a class' data members), the class declaration
(contained in its header file) and stubs for unwritten member
functions (contained in a .C file if one does not exist for the class)
are generated using a tool called "expand_class". Expand_class
reads a description file named "<class name>.def" and produces
three files called "<class name>.C", "<class name>.gC" and
"<class name>.H". The ".C" file is created only if one does not
exist. The ".H" file contains the class declaration with place
holders for client additions (see below), macros for overloading the
new and delete operators (which keep track of the global list of
instances) and forward declarations and include files if the class
requires any. The ".gC" file contains the print and parse routines
(co_print() and co_parse()) and is included into the ".C" file.
Another utility called "make_find" generates a file called
"DUI_find.C" which contains functions for finding an instance of a
class given its numeric class and instance ids (or creating a new
instance if it does not exist) and retrieving a class' numeric id.

2.1.5.1 Client Code Generation

When a new client is created the entire DUI_Widget class tree is
copied and the "DUI_" prefix for all the classes is changed to
"<client prefix>_" (e.g. "DUI_Field" is changed "w_Field" for a
Windows client). It is then given the opportunity to make changes
directly to the DUI interface classes using three types of include
files which are incorporated into the class declaration when
generated (see above). The files are "<client prefix>_decls.HH",
"<client prefix>_<class name without DUI prefix>.HH", and
"<client prefix>_<class name without DUI prefix>.CC". Additions
are made to the ".HH" and ".CC" as if they would occur inside a
class declaration and member function source file respectively. The
"<client prefix>_decls.HH" is incorporated into every class so is
designed for class additions that affect all the classes. More than
this may need to be done to port the library code depending on the
clients environment, but this is provided to make writing clients
easier.

- 84- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.6 DUI Source Directory

The DUI source directory includes not only the two dui libraries
but the clients and applications written for it. The directory has the
following structure (indentation denotes a sub directory):

 $CVSROOT/dui/
 bin/
 etc/
 include/
 dui/
 duimake/
 lib/
 src/
 applications/
 clients/
 generate/
 libdui_comm/
 libduit/

The source for the two libraries are kept in
$CVSROOT/dui/src/libduit and $CVSROOT/dui/src/libdui_comm.
Imake is used as the make utility so to make everything in the
directory structure which includes the two libraries go to
$CVSROOT/dui, and type:
 xmkmf; make World

It will descend through the directories and attempt to make
everything in them. It will fail to make the applications if the other
libraries they depend on are not made and installed where their
make files expect to find them.

Most of the include files in $CVSROOT/dui/include/dui are links
to the files in the two library source directories. The linking is done
by make World. The files must be linked here in order for the two
libraries to make. If it is necessary to make the libraries by
themselves, then link the header files into this directory, cd to the
library source directory and type:

xmkmf; make predepend depend all

This can be done in the two library source directories.

The libraries get installed in $CVSROOT/dui/lib whether they are
made individually or with make World. The application binaries if
they were made get installed in $CVSROOT/dui/bin, as well as the
clients that are intended for the machine the make is being done on
if any.

- 85- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 See individual client and application documentation for how they
are integrated into the dui source if at all.

The tools for generating the code are kept in the
$CVSROOT/dui/src/generate. These are made automatically by the
library make files if they are not made yet or out of date. The
resulting binaries are left and accessed in their source directory.

2.1.7 Detailed Working Example

The following is the source and a detailed description of a typical
session for a simple DUI application. The application resides on a
UNIX machine and provides a form for reading a disk file that the
user requests by entering a file name in a field provided on the
form. It then displays the contents of this file to the user. The
display environment is a PC running Windows 3.1 that has a
modem that can dial in to a tty on the UNIX machine.

The client is run with a command line of:

 windui.exe file_reader

with the following in its DOS environment

SET APP_PATH=/public/app:/public/new_app

The following executable programs are on the UNIX machine:

 /public/new_app/file_reader.dui /home/duiuser/dui_shell
/home/duiuser/dui_server

and a text file:
 /home/duiuser/text.file

The Windows client is started up. On its command line is the name
of the application to run on the remote machine ("file_reader"), and
in its environment a variable is defined containing the search path
to use on the remote machine ("/public/app:/public/new_app"). It
negotiates a modem connection to the UNIX machine and logs in
as a public DUI user. This is done with a serial communications
script on the PC. The public DUI user has the following program
as its login shell /home/duiuser/dui_shell. The shell sets the tty for
raw io and executes the /home/duiuser/dui_server program which
is the dui "server". The client then sends an AppControl Object
containing the name and path. The server executes the program
looking in the supplied paths and terminates. The file_reader

- 86- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

application sends a DUI_Form containing a DUI_Field and a
DUI_Text (grouped under a DUI_Group) and two
DUI_Command's grouped under another DUI_Command
(DUI_Command's can act as groups for other DUI_Command's).
This form is displayed by the Windows client as Window
containing a edit field with the title "File Name", a multi-line edit
field with the title "Contents" and two buttons named "Open" and
"Quit". The user enters "/home/duiuser/text.file" in the "File
Name" field and presses the "Open" button. As soon as the user
exits the "File Name" field the DUI_Field is changed on the client
side and the change is communicated to the application. When the
user presses the "Open" button the DUI_Form is sent back to the
application where the callback function, "read_file()", attached to
that button is executed. Read_file() reads the file and puts its
contents into the DUI_Text. This causes an update to be sent back
to the client which updates the window to reflect the new contents
of the DUI_Text. After the user views the file he presses the "Quit"
button. The Form is sent back to the application where the callback
"quit()" is executed. This function sends an AppControl object
back to the client through the Session::end() function to end the
session. The client receives the AppControl object and terminates.
The application then terminates.

If you look at the following source, you will notice in the file
called File.C there is the main function for the application. It sets
up the session using Session::begin() (which opens the streams),
instantiates a new File_Form and displays it. The definition for
File_Form is found in File_Form.C and File_Form.H. It is derived
from DUI_Form and in its constructor it sets the component() and
command() members for the form to its DUI_Group which
contains a DUI_Field and a DUI_Text and its DUI_Command
which contains its two other commands. When the
DUI_Commands are instantiated they are passed callback
functions which are the other member functions for File_Form.
This is all the source required to write this application.

File.C
 /*
 * main() for File application
 */

 #include <stdlib.h>
 #include <dui/DUI.H>
 #include <dui/Session.H>
 #include "File_Form.H"

 main(int argc, char **argv)
 {
 if (Application_Session::begin(argv[0]) == -1) {
Session::log() << "Session::begin failed." << endl;

- 87- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

exit(-1);
 }

 new File_Form()->display();

 exit(-1);
 }

 File_Form.H
 #ifndef File_Form_HEADER
 #define File_Form_HEADER

 /* File_Form.H
 */

 #include <dui/DUI_Field.H>
 #include <dui/DUI_Text.H>
 #include <dui/DUI_Form.H>

 class File_Form : public DUI_Form {
 public:
 File_Form();
 ~File_Form();

 // Callback functions

 void quit();
 void read_file();

 // important Form components

 DUI_Field * file_name_;
 DUI_Text * file_contents_;
 };

 #endif

 File_Form.C
 //
 // Methods for File_Form Class
 //
 static const char rcsid[] = "$Id:$";

 #include <fstream.h>
 #include <stdlib.h>
 #include <unistd.h>

- 88- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 #include <errno.h>

 #include <dui/DUI.H>
 #include <dui/Callback.H>
 #include <dui/Session.H>
 #include <dui/DUI_Group.H>
 #include <dui/DUI_Text.H>
 #include <dui/DUI_Field.H>
 #include <dui/DUI_Command.H>
 #include <dui/DUI_End_Command.H>
 #include "File_Form.H"

 declare(Callback_Function,File_Form)
 implement(Callback_Function,File_Form)

 /* Constructor for File_Form
 */
 File_Form::File_Form() :
 DUI_Form("View File")
 {

 // Create Form and callbacks

 // Create the data entry field that will hold the
 // file name and the text field that will hold the
 // contents of the file.
 // Group them and assign the group to this Form's
 // "component" member.
 component(
 new DUI_Group("View File",
file_name_ = new DUI_Field("File Name"),
file_contents_ = new DUI_Text("Contents")
)
);

 // Create commands for opening a file
 // and quitting the application,
 // create callback functions to executed
 // when command is pressed,
 // group them, and assign the group to
 // the Form's "command" member.
 command(
new DUI_Command("",
new DUI_Command(this, "Open" ,
 new Callback_Function(File_Form)(
 this, &File_Form::read_file)
),
new DUI_End_Command(this, "Quit" ,
 new Callback_Function(File_Form)(
 this, &File_Form::quit)

- 89- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

)
)
);
 }

 File_Form::~File_Form()
 {
 delete file_name_;
 delete file_contents_;
 }

 // Checks to make sure file is accessible for reading,
 // if so reads the first
 // ten lines and displays them.

 void
 File_Form::read_file()
 {
 file_contents_->reset_line_count();
 STRING err_msg("");
 if (access(file_name_->value(), R_OK) != 0) {
if (errno <= sys_nerr) {
 err_msg += sys_errlist[errno];
} else {
 err_msg += "Access returned unknown file error.";
}
file_contents_->append_line(err_msg);
return;
 }
 STRING file_lines("");
 int line_count = 0;
 ifstream current_file(file_name_->value());
 while (!current_file.eof() && line_count++ <= 20) {
char file_line[256];
current_file.getline(file_line, sizeof(file_line)-1);
file_lines += "0;
file_lines += file_line;
 }
 file_contents_->lines(0, file_lines);
 return;
 }

 // Calls Session::end() to end this DUIT Session.

 void
 File_Form::quit()
 {
 Session::end();
 }

- 90- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8 DUI Detail Class/Object Descriptions

The classes/objects which are used to implement the DUI toolkit
are listed below:

 AppControl
 ChannelBuf
 Communication_Object
 ConfigInfo
 Constraint
 DUI_Command
 DUI_Component
 DUI_Dialog
 DUI_End_Command
 DUI_Field
 DUI_Form
 DUI_Group
 DUI_Invisible_Field
 DUI_Label
 DUI_Multi_Selection
 DUI_Range
 DUI_Selection
 DUI_Table
 DUI_Text
 DUI_Toggle
 DUI_View
 DUI_Widget
 Date
 Filebuf_With_Audit
 Integer
 Justified
 Left_Justified
 Lower_Case
 Mandatory
 Military_Date
 Modifier
 Numeric
 Precision
 Regular_Expression
 Right_Justified
 STRING
 Session
 SocketBuf
 Table_Column
 Truncated
 Unjustified
 Upper_Case

- 91- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

These items are described in the following pages

2.1.8.1 AppControl

NAME

AppControl - Used to pass control information between
application and client.

SYNOPSIS

 #include "AppControl.H"

 class AppControl: public Communication_Object {

 communication_decls(AppControl)
 protected:
 int _end;
 STRING* appname;
 STRING* apppath;
 void receive();
 public:
 void(*exitfp_)();
 friend Session;
 AppControl();
 AppControl(const char *name, void(*exitfp)());
 ~AppControl();
 int execute();
 int end();
 int end(int newend);
 const char *name();
 virtual short updated() const { return 1; };
 virtual short need_to_update() const { return 1; };
 public:
 virtual const char *class_name() const { return "AppControl"; }
 }

DESCRIPTION

This class is used to pass the application name and search path
from the client to the dui server (a specialized application). The
server uses this information to start up an application. It is also
used by either the application or the client to tell the other that it is
time to shutdown.

MEMBER FUNCTIONS

AppControl::AppControl (const char *name, void(*exitfp)
 Description: Constructor accepting an application name and exit
function pointer. The exit function is called when this object is

- 92- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

received and the end flag is set. returns: void

AppControl::~AppControl()
Description: Destructor. Deletes application name and search path.
returns: void

AppControl::AppControl()
Description: Empty constructor. returns: void

int AppControl::end()
Description: Assessor function. returns: int end flag.

int AppControl::end(int newend)
Description: Sets end flag. returns: int new end flag.

int AppControl::execute()
Description: This function attempts to execute the application
named by its appname member plus a ".dui" extension using the
search path specified in its apppath member. It appends the paths
"./" and "./appdir" to the end of the search path before executing,
using execlp(). It does not fork. returns: int -1 if the exec failed
otherwise it does not return.

void AppControl::receive()
Description: The receive function for this Communication_Object.
It check the end flag and calls the exit function and exits if it is set.
returns:
 void

const char *AppControl::name()
Description: Assessor function. returns: const char * the
application name.

 FILES

 AppControl.C AppControl.H

- 93- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.2 ChannelBuf

NAME

 ChannelBuf - Base class for DUI streambuf's.

 SYNOPSIS

 #include "ChannelBuf.H"

 class ChannelBuf: public streambuf { public:
 friend class Session;
 friend class Channel;
 ChannelBuf();
 virtual ~ChannelBuf();
 private:
 int state;
 int inerror();
 virtual int connect();
 virtual int disconnect();
 }
 DESCRIPTION

 This class is a base class for the types of streambufs DUI uses for
communications. It provides a status field and dummy functions
for connect() and disconnect().

 MEMBER FUNCTIONS

 ChannelBuf::~ChannelBuf()
 Description: Destructor. Calls disconnect. returns:
 void

 Description:
 Empty Constructor. returns: void

 int ChannelBuf::inerror()
 Description: Accesser function. returns: 1 if error and 0 otherwise.

 int ChannelBuf::connect()
 Description: Place holder function for derived classes to overload.
returns: 0 always.

 int ChannelBuf::disconnect()
 Description: Place holder function for derived classes to overload.
returns: 0 always.

 FILES

 ChannelBuf.C ChannelBuf.H

- 94- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 2.1.8.3 Communication_Object

NAME

 Communication_Object - Base class for all objects that must be
communicated.

 SYNOPSIS

 #include "Communication_Object.H"

 class Communication_Object { private:
 short updated_;
 short need_to_update_;
 static short update_ok_;
 protected:
 long oid_;
 short is_pointer_;
 virtual void check_pointer() {}
 short updates_ok() { return update_ok_; }
 void updates_ok(short ok) { update_ok_ = ok; }
 Communication_Object();
 virtual void send();
 protected:
 friend class Session;
 virtual void receive();
 protected:
 friend ostream &operator <<(ostream &, Communication_Object *);
 virtual void co_print(ostream &);
 virtual void co_parse(istream &);
 void need_to_update(short n) { need_to_update_ = n;
 }
 public:
 virtual int class_id() const { return 0; }
 virtual ~Communication_Object();
 static Communication_Object *read_in(istream &);
 long oid() const { return oid_; }
 virtual short updated() const { return updated_; }
 virtual short need_to_update() const { return need_to_update_; }
 virtual void update(int changed = 1);
 }

 DESCRIPTION

 This class provides a base for all classes that must be
communicated between the application and the client. For a
discussion of the DUI communications paradigm see DUI.

 MEMBER FUNCTIONS

)

- 95- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 ostream & operator << (ostream & out, Communication_Object
*obj Description: This function overloads the << operator for
Communication_Object. It checks the object it is attempting to
write out to see if it needs to be sent in full (is updated) if not it just
writes out the class id and object id (i.e. stubs) of the object. This is
obviously done for efficiency. returns: ostream & "out".

 Communication_Object::read_in(istream &in)
 Description: Determines the type of the object described by "in"
and parses the object. All objects are given a class id and an object
id (identifying a particular instance). With this information an
appropriate object is either created and given the data that is on the
stream or if the object has already been created finds the object in
the active object list and updates its data elements with what is on
the stream. returns: Communication_Object * the object read in.

 Communication_Object::Communication_Object()
 Description: Empty constructor. returns: void

 Communication_Object::~Communication_Object()
 Description: Destructor. Does nothing. returns: void

 void Communication_Object::receive()
 Description: This function is called on each object which is
received, and is overloaded where appropriate. returns: void

 void Communication_Object::send()
 Description: Sends object using Session::send() (which see).
returns: void

 void Communication_Object::update(int changed)
 Description: Send update of object. This function is called by
functions in derived classes which modify the data members there
by causing them to be retransmitted. There is an update_ok_ flag
which is checked before sending to see if it is desirable to actually
transmit the data. This is there so that repetitive operations that
change the data can be performed without causing re-transmission
on each repetition which can be expensive. returns: void

 Communication_Object::co_print(ostream &out)
 Description: This function writes out the Communication_Object
class' data members. Namely:
 class_id and oid. returns: void

 Communication_Object::co_parse(istream &)
 Description: This function does nothing and is a place holder for
derived classes. One would expect it to read in the class' data
members but those are read in by read_in() to determine which
object is on the stream. returns: void

- 96- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 FILES

 Communication_Object.C Communication_Object.H

 2.1.8.4 Constraint

NAME

 Constraint - Base class for DUI constraints.

 SYNOPSIS

 #include "Constraint.H"

 class Constraint: public Communication_Object {

 communication_decls(Constraint)
 public:
 virtual ~Constraint();
 virtual const char *invalid(const char *string) const;
 protected:
 Constraint();
 public:
 virtual const char *class_name() const { return "Constraint"; }
 }
 DESCRIPTION

 This class is the base class for more specific DUI constraints such
as Integer(which see). Constraints can be applied to
DUI_Field's(which see), and Table_Column's(which see). They
provide a way for the application programmer to constrain the
format of a value. Constraints are checked whenever the value is
being set for the element the constraint is assigned to. If the
constraints are not met the value is not assigned. It is intended that
the client warn the user of the violation of a constraint and allow
him to enter another value. In this way the application programmer
knows that a value will have a certain format without checking.

 MEMBER FUNCTIONS

 Constraint::Constraint()
 Description: Empty constructor. returns: void

 Constraint::~Constraint()
 Description: Destructor. Does nothing. returns: void

 const char *Constraint::invalid(const char *)
 Description: This function must be overloaded by derived classes.
It is intended to check the passed value against the rules of the
constraint and return an error message if it fails. returns: "" always.

- 97- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 FILES

 Constraint.C Constraint.H
 2.1.8.5 ConfigInfo

NAME

 ConfigInfo - A class for storing the communications configuration
information.

 SYNOPSIS

 #include "ConfigInfo.H"

 class ConfigInfo { private:
 int status;
 char *apphost;
 int sport_;
 char *comport_;
 int baud_rate;
 int data_bits;
 int stop_bits;
 char *parity_;
 char *type_;
 char *connect_script;
 char *server_;
 char *logon_;
 public:
 ConfigInfo();
 ConfigInfo(char *atype, char *aapphost, int asport, char *acomport, int abaud_rate, int
adata_bits, int astop_bits, char *aparity, char *aserver);
 ~ConfigInfo();
 char *host();
 char *type();
 char *parity();
 int sport();
 char *comport();
 int baud();
 int data();
 int stop();
 char *script();
 char *server();
 char *logon();
 int inerror();
 char *host(char *);
 char *type(char *);
 char *parity(char *);
 int sport(int);
 char *comport(char *);

- 98- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int baud(int);
 int data(int);
 int stop(int);
 char *script(char *);
 char *server(char *);
 char *logon(char *);
 int write();
 }

 DESCRIPTION

 This class reads from a file called "com.cfg" which it expects to
find in the current directory, and fills in its data members. It
expects com.cfg to be in one of the following formats:

 serial <comport> <baudrate> <parity> <databits> <stopbits> <logon> <script>

 socket <hostname> <port>

 epipes <server prog name>

 MEMBER FUNCTIONS

 ConfigInfo::ConfigInfo()
 Description: Empty constructor. Reads configuration file. returns: void

 ConfigInfo::ConfigInfo(char *atype, char *aapphost, int asport, char *acomport, int
abaud_rate, int adata_bits, int astop_bits, char *aparity, char *aserver)
Description: Constructor accepting data members as arguments. returns: void

 ConfigInfo::~ConfigInfo()
 Description: Destructor. deletes string members apphost, comport_, type_, connect_script,
server_, and logon_. returns: void

 int ConfigInfo::write()
 Description: Writes out the data members into the "com.cfg" file in the current directory.
returns: void

 char *ConfigInfo::host()
 Description: Accesser function. returns: host name.

 char *ConfigInfo::type()
 Description: Accessor function. returns:
 char *ConfigInfo::parity()
 Description: Accessor function. returns: char * parity.

 int ConfigInfo::sport()
 Description: Accessor function. returns: int the socket port number.

 char *ConfigInfo::comport()
 Description: Accessor function. returns: char *, the serial comport (e.g. "com1").

- 99- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 char *ConfigInfo::script()
 Description: Accessor function. returns: char *, connect script name.

 char *ConfigInfo::server()
 Description: Accessor function. returns: char *, the dui server executable name.

 char *ConfigInfo::logon()
 Description: Accessor function. returns: char *, the login name.

 int ConfigInfo::baud()
 Description: Accessor function. returns: int, the baud rate.

 int ConfigInfo::data()
 Description: Accessor function. returns: int, the data bits. (e.g. 7)
 int ConfigInfo::stop()
 Description: Accessor function. returns: int, the stop bits.

 char *ConfigInfo::type(char *newtype)
 Description: Data member setting function. Sets a new communications type. (i.e. "serial").
returns: new data member value.

 char *ConfigInfo::parity(char * newparity)
 Description: Data member setting function. Sets new parity value (i.e. "none"). returns: new
data member value.

 int ConfigInfo::sport(int newsport)
 Description: Data member setting function. Sets new socket port. returns: new data member
value.

 char *ConfigInfo::comport(char * newcomport)
 Description: Data member setting function. Sets new comm port (i.e. "com2"). returns: new
data member value.

 char *ConfigInfo::script(char *newscript)
 Description: Data member setting function. Sets new connect script name. returns: new data
member value.

 char *ConfigInfo::server(char *newserver)
 Description: Data member setting function. Sets new server executable name. returns: new
data member value.

 char *ConfigInfo::logon(char *newlogon)
 Description: Data member setting function. Sets new login name. returns: new data member
value.

 int ConfigInfo::baud(int newbaud)
 Description: Data member setting function. Sets new baud rate. returns: new data member
value.

- 100- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int ConfigInfo::data(int newdata)
 Description: Data member setting function. Sets new data bits (i.e. 8). returns: new data
member value.

 int ConfigInfo::stop(int newstop)
 Description: Data member setting function. Sets new stop bits. returns: new data member
value.

 int ConfigInfo::inerror()
 Description: Status function. returns: 0 if no error 1 if error.

 FILES

 ConfigInfo.C ConfigInfo.H

 2.1.8.6 DUI

NAME

 DUI - Distributed User Interface

 DESCRIPTION

 DUI is a client-server system for building platform- independent
user interfaces. It allows an application programmer to write a user
interface that can be displayed in any environment for which a DUI
client has been written. It allows the application and user interface
to run on separate machines thereby distributing the user interface
processing.

 It was designed to separate the I/O needs of the application from
the display and formatting requirements of the user interface. This
greatly simplifies the task of the application programmer. It does
this by providing a set of simple tools describing the basic forms of
input and output an application requires to interact with a user.
Some of the basic tools are:
 Form - a "screen" which will contain any number of the other
tools as well as a set of Command's that would operate on the data
described in the form.

 Command - a way for the user to act on the data entered or
selected on the form.

 Selection - a list of items from which the user can select one.

 Multi_Selection - a list of items from which the user can select
more than one.

 Toggle - a switch that can be turned either on or off.

- 101- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Field - a data entry field in which the user can enter one line of
data.

 Text - a data entry field in which the user can enter more than one
line of data.

 Range - a range of values from which the user can select one.

 Table - a data entry tool that allows the user to edit rows and
columns in a tabular format.

 These tools are used by the application and implemented by a
"client". The client is a program written in the environment
intended to display the interface to the user. It will implement these
tools as appropriate in that environment. So even though the tools
will look different in each environment for which there is a client
they will still have the same functionality to the application.

 BASIC ARCHITECTURE FILES

 DUI_Command(1) Gatec Manual
DUI_Command(1)

- 102- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.7 DUI_Command

NAME

DUI_Command - Provides support for displaying actions the
user can take.

SYNOPSIS

 #include "DUI_Command.H"

 class DUI_Command: public DUI_Component {

 communication_decls(DUI_Command)
 private:
 List_of(DUI_Command) sub_commands_;
 Callback *callback_;
 DUI_View* view_;
 protected:
 DUI_Command();
 public:
 virtual ~DUI_Command();
 DUI_Command(const char *label, Callback *);
 DUI_Command(const char *label, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0);
 DUI_Command(DUI_Command *, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0);\
 DUI_Command(DUI_View *, const char *label, Callback *);
 virtual void append(DUI_Command *, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0);
 virtual void insert(int , DUI_Command *);
 virtual DUI_Command *remove(int);
 virtual void remove_all(int delete_commands = 1);
 virtual DUI_Command *command(int) const;
 virtual int command_count() const;
 virtual void choose();
 virtual void execute() const;
 virtual void read_only(boolean);
 virtual void set_view(DUI_View *);
 virtual boolean children_updated() const;
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Command"; }
 }

DESCRIPTION

This Class is the interface to user-accessible actions (i.e. "quit"). It

- 103- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

can have a call back function attached to it which is executed when
the user selects it. It can contain instances of other
DUI_Commands. In this form it is a container which serves to
group other DUI_Command's or DUI_Command groups.

 MEMBER FUNCTIONS

 DUI_Command::DUI_Command()
 Description: Empty Constructor for DUI_Command. returns: void

 DUI_Command::DUI_Command(const char *label, Callback *callback)
 Description: Constructor accepting command name and callback as arguments. returns: void

 Callback *cb)
 DUI_Command::DUI_Command(DUI_View *view, const char *label, Description: This
constructor is used for Commands which are imbedded in a view. returns: void

 DUI_Command::DUI_Command(const char *label, DUI_Command *c1,
DUI_Command *c2, DUI_Command *c3, DUI_Command *c4, DUI_Command
*c5, DUI_Command *c6, DUI_Command *c7, DUI_Command *c8, DUI_Command *c9,
DUI_Command *c10)
 Description: Constructor for creating a container command. returns: void

 DUI_Command::DUI_Command(DUI_Command *c1, DUI_Command *c2,
DUI_Command *c3, DUI_Command *c4, DUI_Command *c5, DUI_Command
*c6, DUI_Command *c7, DUI_Command *c8, DUI_Command *c9, DUI_Command *c10)
 Description: Constructor for creating a container command. returns: void

 DUI_Command::~DUI_Command()
 Description: Destructor - removes sub commands if there are any. returns: void

 DUI_Command::choose()
 Description: Sets this Command as the current choice for its view. returns: void

 DUI_Command(1) Gatec Manual DUI_Command(1)
 DUI_Command::append(DUI_Command *c1, DUI_Command *c2, DUI_Command
*c3, DUI_Command *c4, DUI_Command *c5, DUI_Command *c6,
DUI_Command *c7, DUI_Command *c8, DUI_Command *c9, DUI_Command *c10)
 Description: Appends up to 10 commands to sub_commands_ list. returns: void

 DUI_Command::insert(int i, DUI_Command *command)
 Description: Inserts a subcommand at i in sub_commands_. returns: void

 DUI_Command::remove(int i)
 Description: Removes subcommand i. returns: void

 DUI_Command::remove_all(int delete_commands)
 Description: Removes all subcommands, deleting them if delete_commands is non-zero.
returns: void

- 104- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Command::command(int i)
 Description: Returns DUI_Command pointer indexed by i in sub_commands_; returns: sub-
command indexed by i or 0 if out of range.

 DUI_Command::command_count()
 Description: Gives the number of DUI_Commands in the subcommand list. returns: the
number of subcommands;
 DUI_Command::execute()
 Description: Executes this commands call back function if any. returns: void

 DUI_Command::read_only(boolean ro)
 Description: Sets this command and all of its sub commands to arg ro if not already set. returns:
void

 DUI_Command::set_view(DUI_View *view)
 Description: Sets the view of this command and all its subcommands to arg view. returns: void

 DUI_Command::children_updated()
 Description: Indicate whether this command has been updated. returns: 1 if this or any of it's
children is updated()
 DUI_Command::display_data(ostream &out)
 Description: Outputs the command and subcommands to arg out in a simple textual format.
returns: void

 FILES

 DUI_Command.C DUI_Command.H

- 105- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.8 DUI_Component

NAME

DUI_Component - Base class for DUI_Widgets that can be
attached to a DUI_View.

SYNOPSIS

 #include "DUI_Component.H"

 class DUI_Component: public DUI_Widget {

 communication_decls(DUI_Component)
 private:
 boolean read_only_;
 Callback *update_callback;
 public:
 virtual ~DUI_Component();
 virtual void read_only(boolean);
 virtual boolean read_only() const;
 virtual boolean children_updated() const { return updated(); };
 virtual const char *check_invalid();
 virtual void active_update(Callback *);
 protected:
 DUI_Component();
 DUI_Component(const char *name);
 protected:
 friend class Session;
 virtual void receive();
 public:
 virtual const char *class_name() const { return "Component"; }
 }

 DESCRIPTION

 All the DUI_Widgets that can be attached to a DUI_View are
subclassed off of this class. It eliminates the need for DUI_View
and DUI_Group to know what kind of components they are
dealing with for certain operations. It is derived from
DUI_Widget(which see). See also DUI.

 MEMBER FUNCTIONS

 DUI_Component::DUI_Component()
 Description: Constructor for DUI_Component which is a
DUI_Widget. returns: void

 DUI_Component::DUI_Component(const char *name)
 Description: Constructor which accepts a name passing it on to
DUI_Widget which actually stores the name. returns: void

- 106- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DUI_Component::~DUI_Component()
 Description: Destructor. returns: void

 DUI_Component::read_only(boolean ro)
 Description: Sets the read only flag to arg. This is where read
only-ness is stored. returns: void

 DUI_Component::read_only()
 Description: Retrieve read only status. returns:
 boolean representing the read only status.

 DUI_Component::check_invalid()
 Description: check_invalid() should return 0 if a components
value is valid, otherwise it should return a const char * description
of why it's invalid. This is a virtual class to be defined
appropriately by derived classes. It has no meaning for
DUI_Component. returns:
 0 always.

 DUI_Component::receive()
 Description: Default receive() function calls update_callback if it
is not 0. The receive function is called whenever this component is
received either by the client or application. returns: void

 DUI_Component::active_update(Callback *callback)
 Description: This provides a way to set the active update Callback.
The active update callback is a function called whenever this
object is received by the application. (See Callback(1)). returns:
void

 FILES

 DUI_Component.C DUI_Component.H

- 107- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.9 DUI_Dialog

NAME

 DUI_Dialog - Specialized DUI_View for informational and
confirmation dialogs.

 SYNOPSIS

 #include "DUI_Dialog.H"

 class DUI_Dialog: public DUI_View {

 communication_decls(DUI_Dialog)
 public:
 static DUI_Dialog *instance(const char *label, DUI_Component *comp = 0, const char
*command1 = 0, Callback *callback1 = 0, const char *command2 = 0, Callback *callback2 = 0
);
 static DUI_Dialog *instance(const char *label, Callback *yes_callback, Callback *
no_callback = 0);
 void add_command(const char *command, Callback *callback = 0);
 virtual ~DUI_Dialog();
 private:
 static DUI_Dialog *instance_;
 DUI_Label *label_component;
 DUI_Dialog();
 DUI_Dialog(char *);
 void change_dialog(const char *label, DUI_Component *comp, const char *command1 =
0, Callback *callback1 = 0, const char *command2 = 0, Callback *callback2 = 0);
 public:
 virtual const char *class_name() const { return "Dialog";
 }
 }

 DESCRIPTION

 This class is intended to provide easy access to a
DUI_View(which see) for displaying informational messages and
simple confirmations. It contains only two view level commands.
One of its constructors allows for the addition of view level
component so it can be used to construct a more complex view.

 MEMBER FUNCTIONS

 DUI_Dialog *DUI_Dialog::instance(const char *label,
DUI_Component *comp, const char *command1, Callback
*callback1, const char *command2, Callback *callback2)
 Description: There is only one instance of a Dialog in any
application. The same dialog is used each time but is modified
according to the arguments of the instance function. This function
allows the user to tailor the dialog's component as well as the two

- 108- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

view level commands. All but the first argument default to 0 so it
can also be used to display a message with a single OK button. (see
change_dialog). returns: void

 DUI_Dialog::instance(const char *label, Callback
*yes_callback, Callback * no_callback) Description: This
instance function creates a DUI_Dialog with "Yes" and "No"
buttons that use the callbacks passed in as arguments. returns: void

 DUI_Dialog::change_dialog(const char *label, DUI_Component
*comp, const char *command1, Callback *callback1, const char
*command2, Callback *callback2) Description: This function
changes the contents of the dialog. If the DUI_Componet*
argument is 0 it sets the dialogs component to the label argument
otherwise it uses the component passed in and sets the dialog name
to label. Also if command1 is 0 it adds a default command named
"OK" to the dialog. returns: void

 DUI_Dialog::DUI_Dialog()
 Description: Empty constructor. returns: void

 DUI_Dialog::DUI_Dialog(char *view_name)
 Description: Constructor accepting a name as an argument.
returns: void

 void DUI_Dialog::add_command(const char *cmd, Callback
*callback)
 Description: Adds a new End_Command(which see) to this
dialog's command group. returns: void

 DUI_Dialog::~DUI_Dialog()
 Description: Destructor. Resets instance_ pointer to 0 and this
view's component to 0 so the component won't be deleted by the
DUI_View destructor. returns: void

 FILES

 DUI_Dialog.C DUI_Dialog.H

- 109- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.10 DUI_End_Command

NAME

 DUI_End_Command - A command which causes the view to
close down upon selection.

 SYNOPSIS

 #include "DUI_End_Command.H"

 class DUI_End_Command: public DUI_Command {

 communication_decls(DUI_End_Command)
 private:
 DUI_End_Command();
 public:
 virtual ~DUI_End_Command();
 DUI_End_Command(const char *label, Callback *);
 DUI_End_Command(const char *label, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0);
 DUI_End_Command(DUI_Command *, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0,
DUI_Command * = 0, DUI_Command * = 0, DUI_Command * = 0);
 DUI_End_Command(DUI_View *, const char *label, Callback *);
 public:
 virtual const char *class_name() const { return "End_Command"; }
 }

 DESCRIPTION

 This class is derived from DUI_Command (which see) that causes
the view to be closed down on the client side when it is selected.

 MEMBER FUNCTIONS

 DUI_End_Command::DUI_End_Command()
 Description: Constructor accepting a name and a Call- back
function as args. returns: void

 *callback)
 DUI_End_Command::DUI_End_Command(const char *label, Callback Description:
Constructor accepting a name and a Call- back function as args. returns: void

 Callback *cb)
 DUI_End_Command::DUI_End_Command(DUI_View *v, const char *l, Description: This
constructor is used for Commands which are imbedded in a view component. returns: void

 *c1, DUI_End_Command::DUI_End_Command(const char *label, DUI_Command
DUI_Command *c2, DUI_Command *c3, DUI_Command *c4, DUI_Command

- 110- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

*c5, DUI_Command *c6, DUI_Command *c7, DUI_Command *c8, DUI_Command *c9,
DUI_Command *c10)
 Description: Constructor accepting a name and upto ten DUI_Commands as args. It creates a
container for other DUI_Commands. returns: void

 DUI_End_Command::DUI_End_Command(DUI_Command *c1, DUI_Command *c2,
DUI_Command *c3, DUI_Command *c4, DUI_Command *c5, DUI_Command
*c6, DUI_Command *c7, DUI_Command *c8, DUI_Command *c9, DUI_Command *c10)
 Description: Constructor which accepts ten commands as args without a name. returns: void

 DUI_End_Command::~DUI_End_Command()
 Description: Destructor which at present does nothing. returns: void

 FILES

 DUI_End_Command.C DUI_End_Command.H

- 111- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.11 DUI_Field

NAME

 DUI_Field - Provides support for a data entry field.

 SYNOPSIS

 #include "DUI_Field.H"

 class DUI_Field: public DUI_Component {

 communication_decls(DUI_Field)
 private:
 STRING *validation_;
 int max_length_;
 boolean mandatory_;
 List_of(Constraint) constraints;
 List_of(Modifier) modifiers;
 protected:
 STRING* value_;
 DUI_Field();
 public:
 DUI_Field(const char *name, const char *sample_value = 0, int max_length = 0);
 DUI_Field(const char *name, int max_length);
 virtual ~DUI_Field();
 virtual void value(const char *new_value);
 virtual void clear_value();
 virtual const char *value() const;
 virtual const char *invalid();
 virtual const char *check_invalid();
 virtual void max_length(int length);
 virtual int max_length() const;
 virtual void mandatory(boolean);
 virtual boolean mandatory() const;
 virtual void is(const Modifier *);
 virtual void is(const Constraint *);
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Field";
 }
 }

 DESCRIPTION

 This class is used when the application needs textual input from
the user that will no exceed one line. It can have any number of
Modifiers and Constraints(which see) attached to it that either
modify the input after the user has entered it or does not allow the
user to enter invalid input. Example constraints are Integer, and
Date(which see). If the programmer needs multi-line input see

- 112- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DUI_Text.

 MEMBER FUNCTIONS

 DUI_Field::DUI_Field()
 Description: Empty constructor. returns: void

 int maxlen)
 DUI_Field::DUI_Field(const char *name, const char
*sample_value, Description: Constructor accepting a name,
initial value and maximum length as arguments. returns: void

 DUI_Field::DUI_Field(const char *name, int maxlen)
 Description: Constructor accepting a name and maximum length
as arguments. returns: void

 DUI_Field::~DUI_Field()
 Description: Destructor which value string error string and all
constraints and modifiers. returns: void

 const char *DUI_Field::check_invalid()
 Description: Checks all constraints to make sure this field value
is valid. if it is not it sets an error string and returns it. returns:
error string or 0.

 const char *DUI_Field::invalid()
 Description: returns 0 if the previous new_value passed to value()
was valid otherwise returns an explanation of why new_value is
invalid. returns: 0 or error string.

 const char *DUI_Field::value()
 Description: returns the value in the field -- ALWAYS returns a
valid value. (initial empty field IS valid)
 returns: void

 void DUI_Field::max_length(int maxlen)
 Description: Sets maximum length for this field. returns: void

 DUI_Field::mandatory(boolean man)
 Description: Sets mandatory flag for this field. returns: void

 DUI_Field::mandatory()
 Description: Mandatory flag accessor function. returns: boolean
Mandatory flag.

 int DUI_Field::max_length()
 Description: Returns the maximum length of the value in this field
returns: int maximum length.

 void DUI_Field::is(const Constraint *constraint)

- 113- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: allows the application to specify a Constraint that
the field data MUST conform to. (i.e. Regular_Expression("[0-
9]*")) returns: void

 void DUI_Field::is(const Modifier *modifier)
 Description: Allows the application to specify a Modifier for the
field data (i.e. Lower_Case, Truncated, Left_Justified) returns:
void

 void DUI_Field::value(const char *new_value)
 Description: Assign new_value to this DUI_Field. - modifies
new_value with all Modifiers then tests new_value against each
Constraint. If new_value conforms to all Constraints, it is saved
as the new value. validate() may be called to test success of failure
of this call returns: void

 DUI_Field::clear_value()
 Description: Clears the value of this field, does NOT check
modifiers and constraints. returns: void

 DUI_Field::display_data(ostream &out)
 Description: Prints name and value to stream. (e.g. "FieldName:
some value0). returns: void

 FILES

 DUI_Field.C DUI_Field.H

- 114- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.12 DUI_Form

NAME

 DUI_Form - Entry class for application created views.

 SYNOPSIS

 #include "DUI_Form.H"

 class DUI_Form: public DUI_View {

 communication_decls(DUI_Form)
 protected:
 DUI_Form();
 public:
 virtual ~DUI_Form();
 DUI_Form(const char *label, DUI_Component *component = 0, DUI_Command *cmd = 0);
 public:
 virtual const char *class_name() const { return "Form"; }
 }

 DESCRIPTION

 This is the class the application would derive it's views from. It
is derived from DUI_View(which see).

 MEMBER FUNCTIONS

 DUI_Form::DUI_Form()
 Description: Empty Constructor for DUI_Form. returns:
 void

 DUI_Form::DUI_Form(const char *label ,
DUI_Component *component, DUI_Command *command)
Description: Constructor accepting a name, a component (the
body of the view), and a command (the view level commands.).
returns:
 void

 DUI_Form::~DUI_Form()
 Description: Destructor. Does nothing. returns: void

 FILES

 DUI_Form.C DUI_Form.H

- 115- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.13 DUI_Group

NAME

 DUI_Group - A grouping class for DUI_Components.

 SYNOPSIS

 #include "DUI_Group.H"

 class DUI_Group: public DUI_Component {

 communication_decls(DUI_Group)
 private:
 List_of(DUI_Component) components;
 STRING *validation_;
 public:
 virtual ~DUI_Group();
 DUI_Group(const char *name, DUI_Component *c1 = 0, DUI_Component *c2 = 0,
DUI_Component *c3 = 0, DUI_Component *c4 = 0, DUI_Component *c5 = 0,
DUI_Component *c6 = 0, DUI_Component *c7 = 0, DUI_Component *c8 = 0,
DUI_Component *c9 = 0, DUI_Component *c10 = 0);
 DUI_Group(DUI_Component *c1, DUI_Component *c2 = 0, DUI_Component *c3 = 0,
DUI_Component *c4 = 0, DUI_Component *c5 = 0, DUI_Component *c6 = 0,
DUI_Component *c7 = 0, DUI_Component *c8 = 0, DUI_Component *c9 = 0,
DUI_Component *c10 = 0);
 virtual void append(DUI_Component *c1, DUI_Component *c2 = 0, DUI_Component *c3
= 0, DUI_Component *c4 = 0, DUI_Component *c5 = 0, DUI_Component *c6 = 0,
DUI_Component *c7 = 0, DUI_Component *c8 = 0, DUI_Component *c9 = 0,
DUI_Component *c10 = 0);
 virtual void append(const char *label);
 virtual void insert(int i, DUI_Component *c);
 virtual void insert(int i, const char *label);
 virtual DUI_Component *remove(int i);
 virtual void remove_all(int delete_components = 1);
 virtual DUI_Component *component(int i) const;
 virtual int component_count() const;
 virtual const char *check_invalid();
 virtual void read_only(boolean);
 virtual boolean children_updated() const;
 virtual int component_index(const DUI_Component *) const;
 virtual int component_index(const char *) const;
 virtual void display_data(ostream &);
 protected:
 DUI_Group();
 public:
 virtual const char *class_name() const { return "Group";
 }
 }

 DESCRIPTION

- 116- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 This class is used to group DUI_Components together. It is
derived from DUI_Components so it may contain instances of
other DUI_Groups. Since DUI_Views(which see) contain only
one top level component, it is usually a DUI_Group containing the
rest of the components which make up the body of the view.

 MEMBER FUNCTIONS

 DUI_Group::DUI_Group()
 Description: Empty Constructor. returns: void

 DUI_Group::DUI_Group(DUI_Component *c1, DUI_Component *c2, DUI_Component
*c3, DUI_Component *c4, DUI_Component *c5, DUI_Component *c6,
DUI_Component *c7, DUI_Component *c8, DUI_Component *c9, DUI_Component
*c10)
 Description: Constructor accepting upto ten components. returns: void

 DUI_Group::DUI_Group(const char *name, DUI_Component *c1, DUI_Component
*c2, DUI_Component *c3, DUI_Component *c4, DUI_Component *c5,
DUI_Component *c6, DUI_Component *c7, DUI_Component *c8,
DUI_Component *c9, DUI_Component *c10)
 Description: Constructor accepting upto ten components and a name. returns: void

 DUI_Group::~DUI_Group()
 Description: Destructor. Removes all components. returns: void

 DUI_Group::append(DUI_Component *c1, DUI_Component *c2, DUI_Component
*c3, DUI_Component *c4, DUI_Component *c5, DUI_Component *c6,
DUI_Component *c7, DUI_Component *c8, DUI_Component *c9, DUI_Component
*c10)
 Description: Appends upto ten components to the group. returns: void

 DUI_Group::append(const char *label)
 Description: Function that appends a DUI_Label (which see) to the group given a character
string. returns:
 void

 DUI_Group::insert(int i, DUI_Component *c)
 Description: Allows the insertion of a DUI_Component at a returns
 FILES

 DUI_Group.C DUI_Group.H

- 117- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.14 DUI_Invisible_Field

NAME

 DUI_Invisible_Field - A DUI_Field that does not display when
edited.

 SYNOPSIS

 #include "DUI_Invisible_Field.H"

 class DUI_Invisible_Field: public DUI_Field {

 communication_decls(DUI_Invisible_Field)
 protected:
 DUI_Invisible_Field();
 const char *scramble(const STRING *) const;
 public:
 DUI_Invisible_Field(const char *name, const char *sample_value = 0);
 virtual ~DUI_Invisible_Field();
 virtual void value(const char *new_value);
 virtual const char *value() const;
 virtual void is(const Modifier *);
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Invisible_Field"; }
 }

 DESCRIPTION

 This class is derived from DUI_Field(which see). It provides
support for fields that contain sensitive data. Its contents are
communicated to client in a scrambled form. Its contents are not
visible on the clients side.

 MEMBER FUNCTIONS

 DUI_Invisible_Field::DUI_Invisible_Field()
 Description: Empty constructor. returns: void

 DUI_Invisible_Field::DUI_Invisible_Field(const char *name, const char
*sample_value)
 Description: Constuctor accepting a name and an initial value. returns: void

 DUI_Invisible_Field::~DUI_Invisible_Field()
 Description: Destructor. Does nothing. returns: void

 DUI_Invisible_Field::value(const char *new_value)
 Description: Assignment of new value, recomputes value_. calls DUI_Field::value().
returns: void

- 118- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Invisible_Field::value()
 Description: returns value (unscrambled) returns: char * value.

 DUI_Invisible_Field::is(const Modifier * modifier)
 Description: Adds a modifier to the field. returns:
 void

 DUI_Invisible_Field::scramble(const STRING *unscrambled)
 Description: returns scrambled version of unscrambled string, uses STRING::buf() returns:
char * scrambled value.

 DUI_Invisible_Field::display_data(ostream &out)
 Description: Displays only field name. Contents is sensitive. returns: void

 FILES

 DUI_Invisible_Field.C DUI_Invisible_Field.H

 DUI(1) Last change: Tue Jan 4 16:20:30 1994 2

- 119- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.15 DUI_Label

NAME

 DUI_Label - Displays non-editable text.

 SYNOPSIS

 #include "DUI_Label.H"

 class DUI_Label: public DUI_Component {

 communication_decls(DUI_Label)
 protected:
 DUI_Label();
 public:
 virtual ~DUI_Label();
 DUI_Label(const char *name);
 public:
 virtual const char *class_name() const { return "Label";
 }
 }
 DESCRIPTION

 This class is used for displaying text on the view that the user will
not edit.

 MEMBER FUNCTIONS

 DUI_Label::DUI_Label()
 Description: Empty Constructor. returns: void

 DUI_Label::DUI_Label(const char *name)
 Description: Constructor accepting the text to be displayed.
returns: void

 DUI_Label::~DUI_Label()
 Description: Destructor. Does nothing. returns: void

 FILES

 DUI_Label.C DUI_Label.H

- 120- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.16 DUI_Multi_Selection

NAME

 DUI_Multi_Selection - A list accepting multiple selections.

 SYNOPSIS

 #include "DUI_Multi_Selection.H"

 class DUI_Multi_Selection: public DUI_Selection {

 communication_decls(DUI_Multi_Selection)
 private:
 DUI_Group *selected_group;
 public:
 virtual ~DUI_Multi_Selection();
 DUI_Multi_Selection(const char *name, const char * = 0, const char * = 0, const char * = 0,
const char * = 0, const char * = 0, const char * = 0, const char * = 0, const char * = 0, const char
* = 0, const char * = 0);
 DUI_Multi_Selection(const char *name, DUI_Component *, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * =
0);
 DUI_Multi_Selection(const char *name, DUI_Group *group);
 virtual void select(const DUI_Component *);
 virtual void select_all();
 virtual void deselect();
 virtual DUI_Component *remove(int);
 virtual void deselect(const DUI_Component *);
 virtual void deselect(const char *);
 virtual DUI_Group *selections();
 virtual int selection_index(const DUI_Component *);
 virtual void display_data(ostream &);
 protected:
 DUI_Multi_Selection();
 public:
 virtual const char *class_name() const { return "Multi_Selection"; }
 }

 DESCRIPTION

 This class is used when the applications has a list of things
from which the user can choose more than one. It is derived from
DUI_Selection(which see) which allows the user to choose only
one.

 MEMBER FUNCTIONS

 DUI_Multi_Selection::DUI_Multi_Selection()
 Description: Empty constructor. returns: void

- 121- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI(1) Last change: Tue Jan 4 16:20:26 1994 1

 DUI_Multi_Selection(1) Gatec Manual DUI_Multi_Selection(1)
 DUI_Multi_Selection::DUI_Multi_Selection(const char *name, DUI_Component
*c1, DUI_Component *c2, DUI_Component *c3, DUI_Component *c4,
DUI_Component *c5, DUI_Component *c6, DUI_Component *c7, DUI_Component
*c8, DUI_Component *c9, DUI_Component *c10) Description: Constructor accepting a
name, and ten Components as arguments. returns: void

 char *c1, DUI_Multi_Selection::DUI_Multi_Selection(const char *name, const const
char *c2, const char *c3, const char *c4, const char *c5, const char *c6, const char
*c7, const char *c8, const char *c9, const char *c10) Description: Constructor
accepting a name and ten strings as arguments. returns: void

 DUI_Group *new_group)
 DUI_Multi_Selection::DUI_Multi_Selection(const char *name, Description: Constructor
accepting a name and a DUI_Goup representing its selections as arguments. returns: void

 DUI_Multi_Selection::~DUI_Multi_Selection()
 Description: Destructor. Does nothing. returns: void

 DUI_Multi_Selection::remove(int i)
 Description: removes ith component from select and returns pointer to it if ith component
was selected, deselect() is called to avoid dangling ptr. returns:
 DUI_Component indexed by i or 0.

 DUI_Multi_Selection::select(const DUI_Component *component)
 Description: Selects a DUI_Component (if not already selected). returns: void

 DUI_Multi_Selection::select_all()
 Description: select all - turn off updates until all unselected elements have been
appended to selected_group. returns: void

 DUI_Multi_Selection::deselect()
 Description: Deselect all. returns: void

 DUI_Multi_Selection::deselect(const DUI_Component * component)
 Description: Deselect a DUI_Component returns: void

 DUI_Multi_Selection::deselect(const char * label)
 Description: Deselect a DUI_Component by name (provided for application programmer)
returns: void

 DUI_Multi_Selection::selections()
 Description: Returns group of selected components. returns: DUI_Group * selected
components.

 ponent)
 DUI_Multi_Selection::selection_index(const DUI_Component * com- Description: returns:

- 122- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

order that component was selected in, -1 if not selected

 DUI_Multi_Selection::display_data(ostream &out)
 Description: prints selection in simple ascii format to stream. returns: void

 FILES

 DUI_Multi_Selection.C DUI_Multi_Selection.H

- 123- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.17 DUI_Range

NAME

 DUI_Range - allows the user to select from a range of values.

 SYNOPSIS

 #include "DUI_Range.H"

 class DUI_Range: public DUI_Component {

 communication_decls(DUI_Range)
 private:
 int lower_;
 int upper_;
 int value_;
 protected:
 DUI_Range();
 public:
 virtual ~DUI_Range();
 DUI_Range(const char *name, int lower = 0, int upper = 10);
 int lower() const;
 int upper() const;
 int value() const;
 void lower(int);
 void upper(int);
 void value(int);
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Range";
 }
 }

 DESCRIPTION

 This class is used when the application wants to ask the user
for a value within a particular range. The value and upper and
lower limits are expressed as integers.

 MEMBER FUNCTIONS

 DUI_Range::DUI_Range()
 Description: Empty constructor. returns: void

 DUI_Range::DUI_Range(const char *name, int l, int u)
 Description: Constructor accepting a name and an upper and
lower limit. returns: void

 DUI_Range::~DUI_Range()
 Description: Destructor. Does nothing. returns: void

- 124- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int DUI_Range::lower()
 Description: Member access function. returns: int lower limit.

 Description:
 Member access function. returns: int upper limit.

 Description:
 Member access function. returns: int current value.

 void DUI_Range::lower(int l)
 Description: Member setting function for lower limit. returns:
void

 Description:
 Member setting function for upper limit. returns: void

 Description:
 Member setting function for current value. returns:
 void

 DUI_Range::display_data(ostream &out)
 Description: Prints a simple ASCII representation of this range
and its current value on stream "out". returns: void

 FILES

 DUI_Range.C DUI_Range.H

- 125- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.18 DUI_Selection

NAME

 DUI_Selection - Allows a single selection from a list of widgets
or strings.

 SYNOPSIS

 #include "DUI_Selection.H"

 class DUI_Selection: public DUI_Component {

 communication_decls(DUI_Selection)
 private:
 DUI_Group* group;
 DUI_Component* selection_;
 public:
 virtual ~DUI_Selection();
 DUI_Selection(const char *name, const char * = 0, const char * = 0, const char * = 0, const
char * = 0, const char * = 0, const char * = 0, const char * = 0, const char * = 0, const char * =
0, const char * = 0);
 DUI_Selection(const char *name, DUI_Component *, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * =
0);
 DUI_Selection(const char *name, DUI_Group *group);
 virtual DUI_Component *selection() const;
 virtual void select(const DUI_Component *);
 virtual void select(const char *);
 virtual void deselect();
 virtual void append(const char *);
 virtual void append(DUI_Component *, DUI_Component * = 0, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0);
 virtual void insert(int , const char *);
 virtual void insert(int , DUI_Component *);
 virtual DUI_Component *component(int) const;
 virtual DUI_Component *remove(int);
 virtual void remove_all(int delete_components = 1);
 virtual int component_count() const;
 virtual int component_index(DUI_Component *) const;
 virtual int component_index(const char *) const;
 virtual void set_group(DUI_Group *);
 virtual boolean children_updated() const;
 virtual void display_data(ostream &);
 protected:
 DUI_Selection();
 public:
 virtual const char *class_name() const { return "Selection"; }

- 126- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 }
 DESCRIPTION

 This class is used when the application needs to display a list of
items from which the user can select one. It is a base class for
DUI_Multi_Selection (which see) which allows the user to select
more than one of the listed items.

 MEMBER FUNCTIONS

 DUI_Selection::DUI_Selection()
 Description: Empty Constructor. returns: void

 DUI_Selection::DUI_Selection(const char *name, DUI_Component *c1,
DUI_Component *c2, DUI_Component *c3, DUI_Component *c4,
DUI_Component *c5, DUI_Component *c6, DUI_Component *c7, DUI_Component
*c8, DUI_Component *c9, DUI_Component *c10) Description:
 Constructor accepting a name and ten components as items in its list. returns: void

 DUI_Selection::DUI_Selection(const char *name, const char *c1, const char *c2, const
char *c3, const char *c4, const char *c5, const char *c6, const char *c7,
const char *c8, const char *c9, const char *c10) Description: Constructor accepting a name and
ten strings as items in its list. returns: void

 *new_group)
 DUI_Selection::DUI_Selection(const char *name, DUI_Group Description: Constructor
accepting a name and a group to use as the item list. returns: void

 DUI_Selection::~DUI_Selection()
 Description: Destructor which deletes its associated list. returns: void

 DUI_Selection::append(DUI_Component *c1, DUI_Component *c2, DUI_Component
*c3, DUI_Component *c4, DUI_Component *c5, DUI_Component *c6,
DUI_Component *c7, DUI_Component *c8, DUI_Component *c9, DUI_Component
*c10) Description: Add upto ten DUI_Components to the item list. returns: void

 DUI_Selection::insert(int i, DUI_Component * component)
 Description: Insert component into list at index i. returns: void

 void DUI_Selection::append(const char * label)
 Description: Append string "label" to item list. returns: void

 void DUI_Selection::insert(int i, const char * label)
 Description: Insert string "label" into item list at index i. returns: void

 DUI_Selection::remove(int i)
 Description: Removes ith component from select and returns pointer to it. If ith component
was selected, deselect() is called to avoid dangling ptr returns:
 DUI_Component * the component removed.

- 127- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Selection::remove_all(int delete_components)
 Description: Removes all components from selection. WARNING: Does NOT delete
components returns: void

 void DUI_Selection::deselect()
 Description: Resets selection so none are selected. returns: void

 void DUI_Selection::select(const DUI_Component *component)
 Description: Selects a component given a pointer to it, if it is not selected. Does not check to
see if component is in its list. returns: void

 void DUI_Selection::select(const char * label)
 Description: Select a DUI_Component by name (provided for application programmer).
returns: void

 DUI_Selection::selection()
 Description: Accesser function. returns: the selected component.

 DUI_Selection::component(int i)
 Description: Accesser function. returns: component indexed by i in the item list.

 DUI_Selection::component_count()
 Description: Accessor function. returns: The number of items in the list.

 DUI_Selection::set_group(DUI_Group *new_group)
 Description: Changes selection to use new_group as its list. WARNING: This function does
NOT delete the previous group returns: void

 DUI_Selection::component_index(DUI_Component *component)
 Description: Accesser function. returns: the index of a component by pointer or -1 if component
not found.

 DUI_Selection::component_index(const char *label)
 Description: Accesser function. returns: the index of a component by name or -1 if component
not found.

 DUI_Selection::children_updated()
 Description: Status function. returns: 1 if this or any of it's children is updated()
 DUI_Selection::display_data(ostream &out)
 Description: Prints the list of items and the one selected onto the stream "out". returns: void

 FILES

 DUI_Selection.C DUI_Selection.H

- 128- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.19 DUI_Table

NAME

 DUI_Table - For displaying and editing a table of data with rows
and columns.

 SYNOPSIS

 #include "DUI_Table.H"

 class DUI_Table: public DUI_Component {

 communication_decls(DUI_Table)
 private:
 STRING *validation_;
 List_of(Table_Column) columns;
 protected:
 DUI_Table();
 public:
 DUI_Table(const char *name, int num_rows = 1, int num_columns = 1);
 DUI_Table(const char *name, int num_rows, const char *col1, const char *col2 = 0,
const char *col3 = 0, const char *col4 = 0, const char *col5 = 0, const char *col6 = 0, const char
*col7 = 0, const char *col8 = 0, const char *col9 = 0, const char *col10 = 0);
 virtual ~DUI_Table();
 virtual int row_count() const;
 virtual void reset_row_count(int num_rows);
 virtual void append_row(List_of(STRING) *values = 0);
 virtual void insert_row(int row, List_of(STRING) *values = 0);
 virtual void remove_row(int row);
 virtual int column_count() const;
 virtual void append_column(const char *name = "");
 virtual void insert_column(int col, const char *name = "");
 virtual void remove_column(int col);
 virtual void column_name(int col, const char *);
 virtual const char *column_name(int col);
 virtual void column_is(int col, Modifier *);
 virtual void column_is(int col, Constraint *);
 virtual void value(int row, int col, const char *);
 virtual const char *value(int row, int col) const;
 virtual void clear_column_values(int col);
 virtual void clear_row_values(int row);
 virtual void clear_values();
 virtual const char *invalid();
 virtual const char *check_invalid();
 virtual void add_row_ok(boolean);
 virtual void remove_row_ok(boolean);
 virtual void change_ok(boolean);
 virtual void change_column_ok(int column, boolean);
 virtual boolean add_row_ok() const;

- 129- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 virtual boolean remove_row_ok() const;
 virtual boolean change_ok() const;
 virtual boolean change_column_ok(int column) const;
 virtual boolean read_only() const;
 virtual void read_only(boolean);
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Table";
 }
 }

 DESCRIPTION

 This class is used if the application programmer wants to display
data to or accept data from the user in the form of a table with
many rows having the same number and type of columns. It
allows for the editing of each column in any of the rows, as well as
deleting and inserting rows. Any of the operations on the table can
be enabled or disabled. All columns can have Constraints(which
see) and Modifiers(which see) attached to them. (See also
Table_Column).

 MEMBER FUNCTIONS

 DUI_Table::DUI_Table()
 Description: Empty Constructor. returns: void

 num_columns)
 DUI_Table::DUI_Table(const char *name, int num_rows, int Description: Constructor
accepting a name, the number of rows, and the number columns. returns: void

 *col1, DUI_Table::DUI_Table(const char * name, int num_rows, const char const char
*col2, const char *col3, const char *col4, const char *col5, const char *col6, const char
*col7, const char *col8, const char *col9, const char *col10) Description: Constructor
accepting table name, and column names as arguments. returns: void

 DUI_Table::~DUI_Table()
 Description: Destructor for DUI_Table. Deletes validation string. returns: void

 DUI_Table::row_count()
 Description: Accesser function. returns: number of rows in table.

 DUI_Table::reset_row_count(int num_rows)
 Description: Sets the number of rows in the table. Dropping the remaining rows. returns: void

 void DUI_Table::append_row(List_of(STRING)
 Description: Appends a row with values. Accepts a pointer to a list of STRING's. (which
see). returns:
 void

 DUI_Table::insert_row(int row, List_of(STRING)

- 130- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Inserts a row with values into the table at index "row". returns: void

 DUI_Table::remove_row(int row)
 Description: Removes the row indexed by "row" from table. returns: void

 DUI_Table::column_count()
 Description: Accessor function. returns: the number of columns.

 DUI_Table::append_column(const char *name)
 Description: Appends a column with 'name' to table. returns: void

 DUI_Table::insert_column(int col, const char *name)
 Description: Inserts a column with "name" into table. returns: void

 DUI_Table::remove_column(int col)
 Description: Removes the column indexed by "col" from table. returns: void

 DUI_Table::column_name(int col, const char *name)
 Description: Sets the name of a column. returns: void

 DUI_Table::column_name(int col)
 Description: Accesser function. returns: the name of the column indexed by "col".

 DUI_Table::column_is(int col, Constraint * constraint)
 Description: Adds a Constraint to a column. Columns can have constraints and modifiers like
DUI_Fields(which see). returns: void

 DUI_Table::column_is(int col, Modifier * modifier)
 Description: Adds a Modifier to the column indexed by "col". returns: void

 DUI_Table::value(int row, int col, const char *new_value)
 Description: Sets the value at "row", "col". returns:
 void

 DUI_Table::value(int row, int col)
 Description: Accesser function. returns: value at "row", "col" if not there 0.

 DUI_Table::clear_column_values(int col)
 Description: Clears values for the column indexed by "col". returns: void

 DUI_Table::clear_row_values(int row)
 Description: Clear values for the row indexed by "row". returns: void

 DUI_Table::clear_values()
 Description: Clears all values in the table. returns:
 void

 DUI_Table::invalid()
 Description: Status function. returns: 0 if the previous new_value passed to value() was valid
otherwise returns an explanation of why new_value is invalid

- 131- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Table::check_invalid()
 Description: Ensures values in DUI_Table are valid returns: void

 DUI_Table::add_row_ok(boolean b)
 Description: Sets permissons on adding rows. returns:
 void

 DUI_Table::remove_row_ok(boolean b)
 Description: Sets permissions on deleting rows. returns: void

 DUI_Table::change_ok(boolean b)
 Description: Sets permission on whether any of the rows can be changed. returns: void

 DUI_Table::add_row_ok()
 Description: Accesser function. returns: adding row permission.

 DUI_Table::remove_row_ok()
 Description: Accesser function. returns: delete row permissions.

 DUI_Table::change_ok()
 Description: Accesser function. returns: change permissions.

 DUI_Table::read_only()
 Description: Accesser function. returns: read only status.

 DUI_Table::read_only(boolean b)
 Description: Sets read only status to 0 if arg is true else it sets OK on all the other permissions.
returns:
 void

 DUI_Table::change_column_ok(int column, boolean ok)
 Description: Sets change for the column indexed by "column". Each column has its own
change permision flag. returns: void

 DUI_Table::change_column_ok(int column)
 Description: Accesser function. returns: permission for column "column".

 DUI_Table::display_data(ostream &out)
 Description: Prints a simple ascii representation of the table onto stream "out". returns: void

 FILES

 DUI_Table.C DUI_Table.H

- 132- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.20 DUI_Text

NAME

 DUI_Text - Provides support for multi-line text editing.

 SYNOPSIS

 #include "DUI_Text.H"

 class DUI_Text: public DUI_Component {

 communication_decls(DUI_Text)
 private:
 List_of(STRING) lines_;
 List_of(Modifier) modifiers;
 protected:
 DUI_Text();
 public:
 DUI_Text(const char *name, const char *sample_value = 0);
 virtual ~DUI_Text();
 virtual void lines(int i, const char *new_lines);
 virtual void line(int i, const char *new_line);
 virtual void remove_lines(int first, int last = 0);
 virtual void insert_line(int i, const char *new_line);
 virtual void append_line(const char *new_line = 0) { line(lines_.size(), new_line); };
 virtual void append_lines(const char *new_lines) { lines(lines_.size(), new_lines); };
 virtual const char *line(int i) const;
 virtual int line_count() const;
 virtual void reset_line_count(int num_lines = 0);
 virtual void is(const Modifier *);
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Text"; }
 }

 DESCRIPTION

 This class is used if the application programmer needs to accept
input from the user in the form of multiple line free text.

 MEMBER FUNCTIONS

 DUI_Text::DUI_Text()
 Description: Empty constructor. returns: void

 DUI_Text::DUI_Text(const char *name, const char *sample_value)
 Description: Constructor accepting a name and initial value. returns: void

 DUI(1) Last change: Tue Jan 4 16:20:18 1994 1

- 133- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Text(1) Gatec Manual DUI_Text(1)
 DUI_Text::~DUI_Text()
 Description: Destructor deletes all lines. returns:
 void

 DUI_Text::line(int i)
 Description: Accesser function. returns: value of line i or "";
 DUI_Text::remove_lines(int first, int last)
 Description: removes lines "first"-"last" unless "last" == 0 (default) in which case it will
only remove line(first). returns: void

 DUI_Text::line_count()
 Description: Accessor funtion. returns: the number of lines.

 DUI_Text::reset_line_count(int num_lines)
 Description: Sets the number of lines. returns: void

 DUI_Text::insert_line(int i, const char *new_line)
 Description: Inserts a line at index "i". returns:
 void

 DUI_Text::line(int i, const char *new_line)
 Description: Sets the value of line i to new_value. returns: void

 DUI_Text::lines(int i, const char *new_lines)
 Description: Sets the value of several lines (starting with line i) Multiple lines in new_values
should be separated by newline characters. returns: void

 DUI_Text::is(const Modifier *modifier)
 Description: Allows the applciation to specify a Modifier for the text data (i.e. Lower_Case,
Truncated, Left_Justified). returns: void

 DUI_Text::display_data(ostream &out)
 Description: Prints a simple ascii repesentation of DUI_Text onto stream "out". returns: void

 FILES

 DUI_Text.C DUI_Text.H

- 134- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.21 DUI_Toggle

NAME

 DUI_Toggle - Provides support for on-off switch.

 SYNOPSIS

 #include "DUI_Toggle.H"

 class DUI_Toggle: public DUI_Component {

 communication_decls(DUI_Toggle)
 private:
 boolean value_;
 protected:
 DUI_Toggle();
 public:
 virtual ~DUI_Toggle();
 DUI_Toggle(const char *name, boolean value = 0);
 boolean value() const;
 void value(int);
 enum {OFF, ON, TOGGLE};
 virtual void display_data(ostream &);
 public:
 virtual const char *class_name() const { return "Toggle";
 }
 }

 DESCRIPTION

 This class is used when the application programmer wants the user
to specify one of two states (on or off) for a value. (e.g. check
box).

 MEMBER FUNCTIONS

 DUI_Toggle::DUI_Toggle()
 Description: Empty Constructor. returns: void

 DUI_Toggle::DUI_Toggle(const char *name, boolean value)
 Description: Constructor accepting a name and initial value.
returns: void

 DUI_Toggle::~DUI_Toggle()
 Description: Destructor. Does nothing. returns: void

 DUI_Toggle::value()
 Description: Returns the value of this DUI_Toggle. returns:
DUI_Toggle::ON or DUI_Toggle::OFF.

- 135- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI(1) Last change: Tue Jan 4 16:20:16 1994 1

 DUI_Toggle(1) Gatec Manual DUI_Toggle(1)
 DUI_Toggle::value(int new_value)
 Description: Sets (of toggles) the value of this DUI_Toggle.
returns: void

 DUI_Toggle::display_data(ostream &out)
 Description: Print a simple ASCII representation of this object
onto stream "out". returns: void

 FILES

 DUI_Toggle.C DUI_Toggle.H

- 136- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.22 DUI_View

NAME

 DUI_View - Provides support for a view(screen) which contains
other objects.

 SYNOPSIS

 #include "DUI_View.H"

 class DUI_View: public DUI_Widget {

 communication_decls(DUI_View)
 private:
 DUI_Component* component_;
 DUI_Command* command_;
 DUI_Command* choice_;
 static List_of(DUI_View) *waiting_list;
 DUI_View* previous_view_;
 public:
 virtual ~DUI_View();
 virtual void component(DUI_Component *);
 virtual void command(DUI_Command *);
 virtual DUI_Component *component() const;
 virtual DUI_Command *command() const;
 void choose(DUI_Command *choice);
 DUI_Command *choice();
 virtual void update(int changed = 1);
 virtual void display();
 virtual void display_data(ostream &);
 protected:
 friend class Session;
 virtual void receive();
 protected:
 virtual void send();
 DUI_View();
 DUI_View(const char *label, DUI_Component *component = 0, DUI_Command *command =
0);
 public:
 virtual const char *class_name() const { return "View"; }
 }

 DESCRIPTION

 This class is the base class for DUI_Form(which see) which is
the application programmers interface for creating views(forms
or screens). A view contains one component and one command.
In all accept the simplest forms the component will be a
DUI_Group(which see) which will contain all the other widgets
the application programmer wants to appear on the screen. The

- 137- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

command as well will most likely be a composite command (or
command group see DUI_Command) which will contain all the
view-level commands that the programmer wants to appear on
the screen.

 MEMBER FUNCTIONS

 DUI_View::DUI_View()
 Description: Empty Constructor. returns: void

 DUI_View::DUI_View(const char * label, DUI_Component * component,
DUI_Command * command) Description: Constructor accepting a name, a component and
a command. returns:
 void

 DUI_View::~DUI_View()
 Description: Desctructor. Deletes the component and command. returns: void

 DUI_Command *DUI_View::command()
 Description: Accesser function. returns: DUI_Command * the views command.

 DUI_Component *DUI_View::component()
 Description: Accesser function. returns: DUI_Component * the view's component.

 void DUI_View:: command(DUI_Command *command)
 Description: Sets the view's command. returns: void

 void DUI_View::component(DUI_Component *component)
 Description: Sets the view's component. returns: void

 void DUI_View::choose(DUI_Command *choice)
 Description: This function sets the view's choice_ which is the command that is currently
chosen at the view level. returns: void

 DUI_Command * DUI_View::choice()
 Description: Accesser function. returns: DUI_Command *, the currently chosen command.

 void DUI_View::update(int changed)
 Description: Just sets need_to_update() flag, but doesn't send. The need_to_update flag is
used when the decision is being made about what to send from the application to the client
and vice-versa. (see DUI and Communication_Object). returns: void

 void DUI_View::send()
 Description: This function makes sure commands are pointing to view before sending. It
is overloads Communication_Object::send() (which see). returns:
 void

 void DUI_View::display()
 Description: Displays this view to the user. This function actually just places the view on a
waiting list if the view is not the first to be sent during this Call-back cycle (see DUI). returns:

- 138- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

void

 DUI_View::display_data(ostream &out)
 Description: Print a simple ascii representation of this object onto stream "out". returns: void

 FILES

 DUI_View.C DUI_View.H

- 139- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.23 DUI_Widget

NAME

 DUI_Widget - Base class for all DUI toolkit elements.

 SYNOPSIS

 #include "DUI_Widget.H"

 class DUI_Widget: public Communication_Object {

 communication_decls(DUI_Widget)
 private:
 STRING* name_;
 public:
 virtual ~DUI_Widget();
 virtual const char *name() const;
 virtual void name(const char *name);
 virtual void display_data(ostream & out);
 protected:
 DUI_Widget();
 DUI_Widget(const char *name);
 virtual void client_construct() {};
 virtual void client_destruct() {};
 public:
 virtual const char *class_name() const { return "Widget";
 }
 }
DESCRIPTION

This class is never instantiated directly, but is the base class for
all the DUI widgets and more specifically for
DUI_Component(which see) and DUI_View (which see). All it
contains is a name which is something that is shared by all DUI
toolkit elements.

MEMBER FUNCTIONS

 DUI_Widget::DUI_Widget()
 Description: Empty constructor. returns: void

 DUI_Widget::DUI_Widget(const char *name)
 Description: Constructor accepting a name as an argument.
returns: void

 DUI_Widget::~DUI_Widget()
 Description: Destructor. Deletes name. returns: void

 const char *DUI_Widget::name()

- 140- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Accesser function. returns: const char * the name of
the widget.

 void DUI_Widget::name(const char *name)
 Description: Sets the name of the widget. returns:
 void

 DUI_Widget::display_data(ostream &out)
 Description: Print a simple ascii representation of this object
onto stream "out". returns: void

 FILES

 DUI_Widget.C DUI_Widget.H

- 141- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.24 Date

NAME

 Date - Date constraint class.

 SYNOPSIS

 #include "Date.H"

 class Date: public Constraint {

 communication_decls(Date)
 public:
 Date();
 virtual ~Date();
 virtual const char *invalid(const char *string) const;
 static const char *format();
 public:
 virtual const char *class_name() const { return "Date"; }
 }

DESCRIPTION

 This class is used to contrain values to the following form:
 {0-31} {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC} {0-9}{0-
9}

MEMBER FUNCTIONS

 Date::Date()
 Description: Constructor for Date. returns: void

 Date::~Date()
 Description: Destructor. Does nothing. returns: void

 Date::invalid(const char *date)
 Description: Error message returned which describes Date
format. returns: char *, error message or 0.

 const char *Date::format()
 Description: Accessor function. Provides an oracle date string
representing desired format. returns: char *, the oracle date string.

 FILES

 Date.C Date.H

- 142- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.25 Filebuf_With_Audit

NAME

 Filebuf_With_Audit - A filebuf derivative that writes its data to
a log as well.

 SYNOPSIS

 #include "Filebuf_With_Audit.H"

 class Filebuf_With_Audit: public filebuf { public:
 Filebuf_With_Audit();
 Filebuf_With_Audit(int primaryfd, int auditfd);
 virtual ~Filebuf_With_Audit();
 Filebuf_With_Audit *attach_audit_fd(int fd);
 protected:
 private:
 int audit_fd();
 virtual int overflow(int c = EOF);
 int audit_fd_;
 }
DESCRIPTION

This is a debug filebuf class that writes all its output to a separate
file descriptor assigned by the programmer for logging purposes
as well as its original file descriptor.

 MEMBER FUNCTIONS

 Filebuf_With_Audit *Filebuf_With_Audit::attach_audit_fd(int fd)
 Description: Function to attach an audit file descriptor. returns:
Filebuf_With_Audit *, this.

 Filebuf_With_Audit::Filebuf_With_Audit()
 Description: Empty Constructor. returns: void

 auditfd)
 Filebuf_With_Audit::Filebuf_With_Audit(int primaryfd, int
Description: Constructor accepting primary file descriptor as well
as audit file descriptor as arguments. returns: void

 int Filebuf_With_Audit::audit_fd()
 Description: Accessor function. returns: int, audit file descriptor.

 Filebuf_With_Audit::~Filebuf_With_Audit()
 Description: Destructor for Filebuf_With_Audit. Does NOT
close the audit file descriptor. returns: void

 int Filebuf_With_Audit::overflow(int c)

- 143- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Overflow() calls filebuf::overflow() after writing
buffer to audit_fd_. returns: int, return value of
filebuf::overflow().

 FILES

 Filebuf_With_Audit.C Filebuf_With_Audit.H

- 144- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.26 Integer

NAME

 Integer - Constrains a value to integer format.

 SYNOPSIS

 #include "Integer.H"

 class Integer: public Constraint {

 communication_decls(Integer)
 private:
 int valid_sign_;
 public:
 Integer(int valid_sign = 1);
 virtual ~Integer();
 enum {POSITIVE_ONLY, POSITIVE_OR_NEGATIVE};
 virtual const char *invalid(const char *string) const;
 public:
 virtual const char *class_name() const { return "Integer"; }
 }

 DESCRIPTION

 This class constrains value to the following forms:
 with POSITIVE_ONLY set:
 any number of digits preceeded by an optional plus sign.

 with POSITIVE_OR_NEGATIVE set:
 any number of digits preceeded by an optional plus or minus
sign.

 MEMBER FUNCTIONS

 Integer::Integer(int valid_sign)
 Description: Empty constructor. returns: void

 Integer::~Integer()
 Description: Destructor. does nothing returns: void

 const char *Integer::invalid(const char *string)
 Description: Returns error message if string is not Integer.
returns: char *, error message, or 0.

 FILES

 Integer.C Integer.H

- 145- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.27 Justified

NAME

 Justified - Centers a value.

 SYNOPSIS

 #include "Justified.H"

 class Justified: public Modifier {

 communication_decls(Justified)
 private:
 int length_;
 public:
 Justified(int length = 0);
 virtual ~Justified();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Justified"; }

 }
 DESCRIPTION

 This class is derived from Modifier and is used to center a value.

 MEMBER FUNCTIONS

 Justified::Justified(int length)
 Description: Constructor accepting a length which is used to
gauge the centering. returns: void

 Justified::~Justified()
 Description: Destructor. does nothing. returns: void

 Justified::modify(STRING & string)
 Description: Center justify string using length specified in
constructor. returns: void

 FILES

 Justified.C Justified.H

- 146- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.28 Left_Justified

NAME

 Left_Justified - Left justifies a value.

 SYNOPSIS

 #include "Left_Justified.H"

 class Left_Justified: public Modifier {

 communication_decls(Left_Justified)
 private:
 int length_;
 public:
 Left_Justified(int length = 0);
 virtual ~Left_Justified();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Left_Justified"; }

 }
 DESCRIPTION

 This class is used to left justify a value.

 MEMBER FUNCTIONS

 Left_Justified::Left_Justified(int length)
 Description: Constructor accepting length used gauge
justification. returns: void

 Left_Justified::~Left_Justified()
 Description: Destructor. Does nothing. returns: void

 Left_Justified::modify(STRING & string)
 Description: Left justify string using length specified in
constructor. returns:
 FILES

 Left_Justified.C Left_Justified.H

- 147- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.29 Lower_Case

NAME

 Lower_Case - Changes value to lower case.

 SYNOPSIS

 #include "Lower_Case.H"

 class Lower_Case: public Modifier {

 communication_decls(Lower_Case)
 public:
 Lower_Case();
 virtual ~Lower_Case();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Lower_Case"; }
 }

 DESCRIPTION

 This class is used to shift a string to all lower case.

 MEMBER FUNCTIONS

 Lower_Case::Lower_Case()
 Description: Emtpy constructor for Lower_Case Modifier. returns:
void

 Lower_Case::~Lower_Case()
 Description: Destructor. Does nothing. returns: void

 void Lower_Case::modify(STRING & string)
 Description: Convert string to lower case. returns:
 FILES

 Lower_Case.C Lower_Case.H

- 148- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.30 Mandatory

NAME

 Mandatory - Constrains a value to have a length greater than 0.

 SYNOPSIS

 #include "Mandatory.H"

 class Mandatory: public Constraint {

 communication_decls(Mandatory)
 public:
 Mandatory();
 virtual ~Mandatory();
 virtual const char *invalid(const char *string) const;
 public:
 virtual const char *class_name() const { return "Mandatory"; }
 }
 DESCRIPTION

 This class allows the programmer to require input from the user.

 MEMBER FUNCTIONS

 Mandatory::Mandatory()
 Description: Empty contructor. returns: void

 Mandatory::~Mandatory()
 Description: Destructor. void returns:
 Mandatory::invalid(const char *string)
 Description: Returns err message if string is empty. returns: char
*, the error message or 0.

 FILES

 Mandatory.C Mandatory.H

- 149- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.31 Military_Date

NAME

 Military_Date - Military date constraint class.

 SYNOPSIS

 #include "Military_Date.H"

 class Military_Date: public Constraint {

 communication_decls(Military_Date)
 public:
 Military_Date();
 virtual ~Military_Date();
 virtual const char *invalid(const char *string) const;
 public:
 virtual const char *class_name() const { return "Military_Date"; }

 }
 DESCRIPTION

 This class is used to contrain values to the following form:
 {0-9}{0-9} {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC} {0-31}
 MEMBER FUNCTIONS

 Description:
 Constructor for Military_Date. returns: void

 Military_Date::~Military_Date()
 Description: Destructor. Does nothing. returns: void

 Military_Date::invalid(const char *date)
 Description: Error message returned which describes
Military_Date format. returns: char *,the error message or 0.

 FILES

 Military_Date.C Military_Date.H

- 150- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.32 Modifier

NAME

 Modifier - Base class for all DUI modifiers.

 SYNOPSIS

 #include "Modifier.H"

 class Modifier: public Communication_Object {

 communication_decls(Modifier)
 public:
 virtual ~Modifier();
 virtual void modify(STRING & string) const;
 protected:
 Modifier();
 public:
 virtual const char *class_name() const { return "Modifier"; }
 }
 DESCRIPTION

 This class provides a base for the DUI Modifiers such as
Left_Justify (which see). Modifiers can be attached to
DUI_Field's(which see), DUI_Text's(which see) and
Table_Column's(which see). A modifier is applied to the value
before Constraint's(which see) are checked. A modifier modifies
the value according to its definition.

 MEMBER FUNCTIONS

 Modifier::Modifier()
 Description: Empty constructor for Modifier. returns:
 void

 Modifier::~Modifier()
 Description: Destructor. Does nothing. returns: void

 void Modifier::modify(STRING &)
 Description: This function must be overloaded by derived
classes. It should modify the given value according to its
definition. returns: void

 FILES

 Modifier.C Modifier.H

- 151- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.33 Numeric

NAME

 Numeric - Numeric constraint for a value.

 SYNOPSIS

 #include "Numeric.H"

 class Numeric: public Constraint {

 communication_decls(Numeric)
 public:
 Numeric();
 virtual ~Numeric();
 virtual const char *invalid(const char *string) const;
 public:
 virtual const char *class_name() const { return "Numeric"; }
 }

 DESCRIPTION

 This class is used to ensure a value is in a format recognized by
strtod()(which see).

 MEMBER FUNCTIONS

 Numeric::Numeric()
 Description: Empty constructor. returns: void

 Numeric::~Numeric()
 Description: Destructor. Does nothing. returns: void

 const char *Numeric::invalid(const char *string)
 Description: Returns error message if string is not numeric.
returns: char *, the error message or 0.

 FILES

 Numeric.C Numeric.H

- 152- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.34 Precision

NAME

 Precision - Modifier that sets precision of a numeric string.

 SYNOPSIS

 #include "Precision.H"

 class Precision: public Modifier {

 communication_decls(Precision)
 private:
 int left_of_decimal_;
 int right_of_decimal_;
 public:
 Precision(int left_of_decimal = 0, int right_of_decimal = 0);
 virtual ~Precision();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Precision"; }
 }
 DESCRIPTION

 This class is used if the programmer wishes to display a number
to a specific precision.

 MEMBER FUNCTIONS

 Precision::Precision(int left_of_decimal, int right_of_decimal)
 Description: Constructor accepts two arguments, number of
places to the left of the decimal desired, and number of places
to the right of the decimal desired. A 0 (default) means give only
significant places. returns: void

 Precision::~Precision()
 Description: Destructor. Does nothing. returns: void

 void Precision::modify(STRING & string)
 Description: Modify() is called to apply the precision to the
given string. It uses lengths passed to constructor to figure the
precision. It will only use the left-of-decimal length if it greater
than the length of the string, in which case it will pad with 0's.
returns: void

 DUI(1) Last change: Tue Jan 4 16:21:01 1994 1

 Precision(1) Gatec Manual Precision(1)
 FILES

- 153- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Precision.C Precision.H
2.1.8.35 Regular_Expression

NAME

 Regular_Expression - Provides support for a regular expression
constraint.

 SYNOPSIS

 #include "Regular_Expression.H"

 class Regular_Expression: public Constraint {

 communication_decls(Regular_Expression)
 private:
 STRING* expression_;
 Regular_Expression();
 public:
 Regular_Expression(const char *expression);
 virtual ~Regular_Expression();
 virtual const char *invalid(const char *string) const;
 virtual const char *expression() const;
 virtual void expression(const char *exp);
 public:
 virtual const char *class_name() const { return "Regular_Expression"; }

 }
 DESCRIPTION

 This class is used to apply a regular expression to a value as its
constraint. The draw back to using a regular expression is that the
error message returned is only informative to someone who
understands regular expressions.

 MEMBER FUNCTIONS

 Regular_Expression::Regular_Expression(const char *exp)
 Description: Constructor accepting a regular expression as an
argument. returns: void

 Regular_Expression::~Regular_Expression()
 Description: Destructor. Deletes regular expression. returns: void

 Regular_Expression::expression(const char *exp)
 Description: Sets the regular expression pattern. returns: void

 Regular_Expression::expression()
 Description: Returns the regular expression pattern. returns: char
*, the regular expression.

- 154- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI(1) Last change: Tue Jan 4 16:21:00 1994 1

 Regula r_Express ion(1) Ga tec Manua l
Regular_Expression(1)
 Regular_Expression::invalid (const char *string)
 Description: returns 0 if string matches the regular expression
'expression_' returns an informative message otherwise returns:
char *, the message or 0.

 FILES

 Regular_Expression.C Regular_Expression.H

- 155- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.36 Right_Justified

NAME

 Right_Justified - Right jusifies a value.

 SYNOPSIS

 #include "Right_Justified.H"

 class Right_Justified: public Modifier {

 communication_decls(Right_Justified)
 private:
 int length_;
 public:
 Right_Justified(int length = 0);
 virtual ~Right_Justified();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Right_Justified"; }

 }
 DESCRIPTION

 This class is used to right justify a value. It is derived from
Modifier(which see).

 MEMBER FUNCTIONS

 Right_Justified::Right_Justified(int length)
 Description: Constructor accepting the length used to gauge
justification. returns: void

 Right_Justified::~Right_Justified()
 Description: Destructor. Does nothing. returns: void

 Right_Justified::modify(STRING & string)
 Description: Right justify string using length specified in
constructor. returns: void

 FILES

 Right_Justified.C Right_Justified.H

- 156- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.37 STRING

NAME

 STRING - A generic string class.

 SYNOPSIS

 #include "STRING.H"

 class STRING: public Communication_Object {

 communication_decls(STRING)
 protected:
 friend ostream &operator << (ostream &, STRING &);
 friend istream &operator >> (istream &, STRING &);
 char *value_;
 int length_;
 int size_;
 static STRING *buf_;
 STRING();
 private:
 void resize(int size);
 void set(const char *value, int len);
 public:
 static STRING &buf();
 STRING(int size);
 STRING(STRING &);
 STRING(const char *str);
 STRING(const char *str, int length);
 virtual ~STRING();
 char *value() { return value_; };
 operator char *() { return value_; };
 int length() { return length_; };
 STRING &operator = (STRING & str);
 STRING &operator +=(STRING & str);
 STRING &operator = (const char *str);
 STRING &operator +=(const char *str);
 STRING &operator +=(char);
 boolean operator ==(STRING & str) { return (strcmp(value_, str.value_) == 0); };
 boolean operator !=(STRING & str) { return (strcmp(value_, str.value_) != 0); };
 boolean operator > (STRING & str) { return (strcmp(value_, str.value_) > 0); };
 boolean operator >=(STRING & str) { return (strcmp(value_, str.value_) >= 0); };
 boolean operator < (STRING & str) { return (strcmp(value_, str.value_) < 0); };
 boolean operator <=(STRING & str) { return (strcmp(value_, str.value_) <= 0); };
 boolean operator ==(const char *str) { return (strcmp(value_, str ? str : "") == 0); };
 boolean operator !=(const char *str) { return (strcmp(value_, str ? str : "") != 0); };
 char operator[](int index);
 boolean convert(int &);
 boolean convert(long &);

- 157- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 boolean convert(float &);
 boolean convert(double &);
 void unjustify();
 void center_justify(int length);
 void right_justify(int length);
 void left_justify(int length);
 public:
 virtual const char *class_name() const { return "STRING";
 }
 }

 DESCRIPTION

 This class is a generic string class which has been made into a
Communication_Object(which see) for use with DUI.

 MEMBER FUNCTIONS

 STRING::STRING()
 Description: Private constructor for internal use only. returns: void

 STRING::STRING(int size)
 Description: Constructs empty, null-terminated String of length
size. returns: void

 STRING::STRING(const char *str)
 Description: Constructor that copies a NULL-terminated array of
char. returns: void

 STRING::STRING(const char *str, int length)
 Description: Constructor that copies a non NULL-terminated
array of char using length. returns: void

 STRING::~STRING()
 Description: Destructor for STRING. returns: void

 STRING::set(const char *value, int size)
 Description: sets value_ to value and length_ to length (growing
String if neeeded) and NULL-terminates value_ returns: void

 STRING::resize(int size)
 Description: Resize value_ if needed. returns: void

 STRING& STRING::operator += (STRING & str)
 Description: Concatenate str to end of STRING. returns: the
STRING&.

 STRING& STRING::operator += (const char * chars)
 Description: Concatenates char * chars to end of string.
returns: this String&.

- 158- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 STRING& STRING::operator += (char c)
 Description: Concatenates char c to end of string. returns: this
String &.

 STRING& STRING::operator = (STRING & str)
 Description: Assignment operator for STRING (from
STRING). returns: the STRING &.

 STRING& STRING::operator = (const char * str)
 Description: Assignment operator for STRING (from char *).
returns: the STRING &.

 STRING::operator[](int index)
 Description: Operator [n] returns the nth char in STRING.
returns: char the indexed character.

 STRING::convert(int &num)
 Description: Converts string to int. returns: 1 if successful, 0
otherwise

 STRING::convert(long &num)
 Description: Converts string to long. returns: 1 if successful, 0
otherwise

 STRING::convert(float &num)
 Description: Converts string to float. returns: 1 if successful, 0
otherwise

 STRING::convert(double &num)
 Description: Converts string to double. returns: 1 if successful, 0
otherwise

 DUI(1) Last change: Tue Jan 4 16:20:56 1994 3

 STRING(1) Gatec Manual STRING(1)
 STRING::co_print(ostream &out)
 Description: This code is generated for other communication
objects. It was too difficult for STRING so it is written by hand.
This function writes out the string object onto stream. returns: void

 STRING::co_parse(istream &in)
 Description: This code is auto-generated for other communication
objects. It was too difficult for STRING because we needed to
use length to allocate enough space. This function reads in a
STRING off the stream. returns: void

 STRING::unjustify()
 Description: strips leading and trailing spaces. returns: void

 STRING::left_justify(int len)

- 159- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: removes trailing spaces, pads with leading spaces.
returns: void

 STRING::center_justify(int len)
 Description: makes number trailing spaces = number leading
spaces. returns: void

 STRING::right_justify(int len)
 Description: removes leading spaces, pads with trailing spaces.
returns: void

 STRING::buf()
 Description: This function allows access to static buf_. returns:
String & buf_.

 FILES

 STRING.C STRING.H

- 160- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.38 Session

NAME

 Session - Provides support for opening up a DUI
communications session.

 SYNOPSIS

 #include "Session.H"

 class Session { protected:
 Session(char *progname);
 ~Session();
 int status;
 int running;
 istream* inchannel;
 ostream* outchannel;
 AppControl* thisapp;
 ConfigInfo* configuration;
 ofstream* log_;
 static Session *instance();
 static Session *instance_;
 public:
 static void send(Communication_Object*);
 static void run();
 static int inerror();
 static int end();
 static ofstream& log();
 static void warning(const char *c);
 static void debug(const char *c);
 };
 /* * Client_Session class definition. * */

 class Client_Session: public Session { private:
 Client_Session(char *progname): Session(progname) {};
 ~Client_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 };
 /* * Server_Session class definition. * */

 class Server_Session: public Session { private:
 Server_Session(char *progname): Session(progname) {};
 ~Server_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 };
 /* * Application_Session class definition. * */

- 161- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 class Application_Session: public Session { private:
 Application_Session(char *progname): Session(progname)
 {};
 ~Application_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 }

 DESCRIPTION

 The class Session is used as a base class for Client_Session,
Server_Session and Application_Session. These classes differ
only in their definitions of the begin() function which is called
to establish a connection when the client, server, or application
starts up. See DUI for a more detailed description of the DUI
communications paradigm.

 MEMBER FUNCTIONS

 inline Session *Session::instance()
 Description: There is only one instance of a Session in a program.
This function gives the user access to that instance. returns:
Session *, the Session.

 Session::Session(char *appname)
 Description: Constructor accepting an application name as
argument. It opens a log file in the form:
 dui.log.<application name>.<uid>. returns: void

 void Session::send(Communication_Object* cobject)
 Description: This function calls the << operator on the passed
Communication_Object through the outchannel established by
the begin() function. returns: void

 Session::~Session()
 Description: Destructor. Deletes inchannel, outchannel, thisapp,
configuration. returns: void

 int Session::end()
 Description: This function is called to close a communications
session. It sends the AppControl(which see)
 object to the other side of the session after setting its end flag
and then calls receive on it. This should end the application on this
side as well. returns: -1 if it returns at all, it should not return.

 int Session::inerror()
 Description: Status function. returns: 1 if error, 0 otherwise.

 void Session::run()
 Description: This function is called by DUI_View::send()

- 162- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

when it sends the first view. It goes into a loop stopped only by a
failure on the communications line. This basically sets up an
"event" loop where by actions are initiated when data is received
from the client or application. The loop is terminated when
Session::end() is called because exit() is called by the receive
function for AppControl which is executed by Session::end(). The
loop is protected against re-entrance by a "running" flag. returns:
void

 ofstream& Session::log()
 Description: Accesser function. returns: ofstream &, the log file.

 void Session::warning(const char *c)
 Description: Writes out the char * argument to the log file flagged
as a warning. returns: void

 void Session::debug(const char *c)
 Description: Writes out the char * argument to the log file flagged
as debug. returns: void

 int Client_Session::begin(char *appname, void (*efp)
 Description: Begin() function for Client_Session sub-class. This
function reads in the configuration information and based upon
what is says establishes the communications channels, sends the
AppControl object for this client, and waits for the AppControl
object to be sent back from the application acknowledging
proper start up. returns: int, success or failure.

 int Server_Session::begin(char *appname, void (*efp)
 Description: Begin() function for Server_Session sub-class. The
server (which is a specialzed application)
 starts up by open stdin and stdout as its channels, reading in
the AppControl which it expects on its inchannel and executing
that AppControl object. This should start up the application.
returns: int -1 if it returns which it shouldn't.

 int Application_Session::begin(char *appname, void (*efp)
 Description: Begin() function for Application_Session subclass.
The application starts up by opening up stdin and stdout as its
inchannel and outchannel and sending its AppControl as
confirmation that it started up successfully. returns: 0 always.

 FILES

 Session.C Session.H

- 163- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.39 SocketBuf

NAME

 SocketBuf - streambuf derivative for sockets.

 SYNOPSIS

 #include "SocketBuf.H"

 class SocketBuf: public ChannelBuf { public:
 SocketBuf();
 virtual ~SocketBuf();
 virtual int connect(char *host, int port);
 SocketBuf *attach(int fd);
 SocketBuf *attach_audit_fd(int fd);
 protected:
 private:
 const char *host();
 int port();
 int fd();
 int audit_fd() { return _audit_fd; };
 int opened();
 int nonblocking();
 int nonblocking(int);
 virtual int connect();
 SocketBuf *accept(int & fd);
 SocketBuf *verbose(int);
 virtual int disconnect();
 virtual int overflow(int c = EOF);
 virtual int underflow();
 virtual int sync();
 virtual int doallocate();
 void error(const char *);
 void sys_error(const char *);
 char *_host;
 int _port;
 int _fd;
 int _audit_fd;
 int _opened;
 int _close;
 int _nonblocking;
 int _verbose;
 }

 DESCRIPTION

 This class implements a streambuf using a socket as the sink and
source for the data.

- 164- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 MEMBER FUNCTIONS

 SocketBuf *SocketBuf::accept(int & fd)
 Description: This function is used to accept an incomming socket
connection request. returns: SocketBuf*, this.

 SocketBuf *SocketBuf::attach(int fd)
 Description: Sets the file descriptor used on reads and writes to
the passed fd if there is not one set already. returns: SocketBuf
*, this if successful or 0 if not.

 SocketBuf *SocketBuf::attach_audit_fd(int fd)
 Description: Attach a file descriptor to send audit to. The audit
file descriptor is written to before any writes to the primary file
descriptor. returns: SocketBuf *, this.

 int SocketBuf::connect(char *host, int port)
 Description: This function attempts to establish a connetion to
the passed "host" and "port" number. Host can be either an ip
address or a host name. It attempts to connect() 4 times. returns:
1 if successful, 0 otherwise.

 int SocketBuf::connect()
 Description: Default connect for testing purposes. Should be
removed. returns: 1 if successful, 0 otherwise.

 int SocketBuf::disconnect()
 Description: Attempts to close the socket. returns: 1 if successful,
0 otherwise.

 SocketBuf *SocketBuf::verbose(int verbose)
 Description: Sets verbose flag. returns: SocketBuf*, this.

 SocketBuf::SocketBuf()
 Description: Empty constructor. Initializes data members. returns:
void

 const char *SocketBuf::host()
 Description: Accessor function. returns: const char *, host name or
ip address.

 int SocketBuf::fd()
 Description: Accessor function. returns: int file descriptor, -1 if
none.

 int SocketBuf::nonblocking()
 Description: Accesser function. returns: blocking mode.

 int SocketBuf::nonblocking(int nonblocking)
 Description: Sets blocking mode. Read will not return until

- 165- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

something is on the socket or there is an error, if nonblocking is
set to no(0). returns: current blocking mode.

 int SocketBuf::opened()
 Description: Status function. returns: 0 if not opened, 1
otherwise.

 int SocketBuf::port()
 Description: Accessor function. returns: current port number or 0.

 void SocketBuf::error(const char *msg)
 Description: If verbose is turned on it writes the error message
to cerr. returns: void

 void SocketBuf::sys_error(const char *msg)
 Description: Uses perror() to output the message passed as well
as the last error that occurred on a system call. returns: void

 SocketBuf::~SocketBuf()
 Description: Destructor. deletes buffer space and calls
disconnect(). returns: void

 int SocketBuf::doallocate()
 Description: Allocates buffer space. Allocates separate buffer
space for put and get. returns: 0 if successful EOF if not.

 int SocketBuf::overflow(int c)
 Description: Overflow() for a socket sink. Writes to the audit
file descriptor. as well as to the primary file descriptor(socket).
returns: int number of characters written.

 int SocketBuf::sync()
 Description: This function resets the get buffer(everything not
read is lost.) and flushes the put buffer to the socket(writes
everything out). returns: int overflow() return value. (the number
of chars written).

 int SocketBuf::underflow()
 Description: Reads from the source (socket) as much as its buffer
will currently hold minus what hasn't been read yet, or whatever
read returns on a successful attempt. returns: int next character
in buffer or EOF.

 FILES

 SocketBuf.C SocketBuf.H

- 166- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.40 Table_Column

NAME

 Table_Column - Class for dealing with columns in a
DUI_Table.

 SYNOPSIS

 #include "Table_Column.H"

 class Table_Column: public Communication_Object {

 communication_decls(Table_Column)
 private:
 STRING *validation_;
 STRING* name_;
 List_of(STRING) values;
 List_of(Constraint) constraints;
 List_of(Modifier) modifiers;
 int change_ok_;
 public:
 Table_Column(const char *name = "", int num_rows = 1);
 virtual ~Table_Column();
 virtual const char *name() const;
 virtual void name(const char *name);
 virtual void is(const Modifier *);
 virtual void is(const Constraint *);
 virtual int row_count() const;
 virtual void reset_row_count(int num_rows);
 virtual void append_row(const char *value = "");
 virtual void insert_row(int row, const char *value = "");
 virtual void remove_row(int row);
 virtual void value(int row, const char *new_value);
 virtual const char *value(int row) const;
 virtual const char *invalid();
 virtual const char *check_invalid();
 virtual void clear_values();
 virtual int width() const;
 virtual void change_ok(boolean);
 virtual boolean change_ok() const { return change_ok_;
 };
 public:
 virtual const char *class_name() const { return "Table_Column"; }
 }

 DESCRIPTION

 This class is used by DUI_Table(which see) to deal with
columns. This is where actual values are stored for each row. It
contains a list of STRING's(which see) which are the column

- 167- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

values for each row. It also contains lists of Modifiers(which see)
and Constraints(which see) that are applied to this column across
all rows.

 MEMBER FUNCTIONS

 Table_Column::Table_Column(const char *name, int num_rows)
 Description: Constructor accepting a name and number of rows.
returns: void

 Table_Column::~Table_Column()
 Description: Destructor. Deletes the name. returns:
 void

 Table_Column::name()
 Description: Accesser function. returns: char *, the name of the
column.

 Table_Column::name(const char *name)
 Description: Sets the name of a column. returns: void

 Table_Column::is(const Modifier * modifier)
 Description: Attaches a Modifier to this column. returns: void

 Table_Column::is(const Constraint * constraint)
 Description: Attaches a Constraint to this column. returns: void

 Table_Column::row_count()
 Description: Accesser function. returns: int the number of rows
in this column.

 Table_Column::reset_row_count(int num_rows)
 Description: Resets the number of rows in this column. Removes
the trailing rows. returns: void

 Table_Column::append_row(const char *new_value)
 Description: Append a row to this column. returns:
 void

 Table_Column::insert_row(int row, const char *new_value)
 Description: Insert a row into this column at "row". returns: void

 Table_Column::remove_row(int row)
 Description: Remove row "row" from this column. returns: void

 Table_Column::value(int row, const char *new_value)
 Description: Set the value of a row in this column. Applies the
modifiers and constraints and sets it only if value complies.
returns: void

- 168- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Table_Column::value(int row)
 Description: Returns the value of a row in the column. returns:
char *, the value at "row".

 Table_Column::invalid()
 Description: Returns 0 if the previous new_value passed to
value() was valid otherwise returns an explanation of why
new_value is invalid. returns: char *, 0 or message.

 Table_Column::check_invalid()
 Description: Make sure each value is valid. returns:
 char *, summation error message or 0.

 Table_Column::clear_values()
 Description: Clears all values in column. returns:
 void

 Table_Column::width()
 Description: Returns length of longest STRING in column (name
or value). returns: int length.

 Table_Column::change_ok(boolean b)
 Description: Sets change flag which is used to check wether this
column can be changed or not. returns:
 void

 FILES

 Table_Column.C Table_Column.H

- 169- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.41 Truncated

NAME

 Truncated - Modifier to truncate value.

 SYNOPSIS

 #include "Truncated.H"

 class Truncated: public Modifier {

 communication_decls(Truncated)
 private:
 int length_;
 public:
 Truncated(int length);
 virtual ~Truncated();
 virtual void modify(STRING & string) const;
 protected:
 Truncated();
 public:
 virtual const char *class_name() const { return "Truncated"; }
 }
 DESCRIPTION

 This modifier is used to truncate a value to a length given in the
constructor.

 MEMBER FUNCTIONS

 Truncated::Truncated()
 Description: Constructor for Trunctiated. returns:
 void

 Truncated::Truncated(int length)
 Description: Constructor accepting a length as an argument which
is used to truncate a value. returns: void

 Truncated::~Truncated()
 Description: Destructor. Does nothing. returns: void

 Truncated::modify(STRING &string)
 Description: Truncate string to 'length_'. returns:
 void

 FILES

 Truncated.C Truncated.H

- 170- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.42 Unjustified

NAME

 Unjustified - Modifier used to strip all leading and trailing blanks.

 SYNOPSIS

 #include "Unjustified.H"

 class Unjustified: public Modifier {

 communication_decls(Unjustified)
 public:
 Unjustified();
 virtual ~Unjustified();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Unjustified"; }
 }
 DESCRIPTION

 This class is used to unjustify a value(strip all leading and
trailing blanks).

 MEMBER FUNCTIONS

 Unjustified::Unjustified()
 Description: Constructor. returns: void

 Unjustified::~Unjustified()
 Description: Destructor. Does nothing. returns: void

 Unjustified::modify(STRING & string)
 Description: Strip all leading and trailing spaces from string.
returns: void

 FILES

 Unjustified.C Unjustified.H

- 171- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.1.8.43 Upper_Case

NAME

 Upper_Case - Modifier used to change value to upper-case.

 SYNOPSIS

 #include "Upper_Case.H"

 class Upper_Case: public Modifier {

 communication_decls(Upper_Case)
 public:
 Upper_Case();
 virtual ~Upper_Case();
 virtual void modify(STRING & string) const;
 public:
 virtual const char *class_name() const { return "Upper_Case"; }
 }

 DESCRIPTION

 This modifier is used to convert all characters in the value to
upper-case. It uses toupper()(which see).

 MEMBER FUNCTIONS

 Upper_Case::Upper_Case()
 Description: Constructor for Upper_Case Modifier. returns: void

 Upper_Case::~Upper_Case()
 Description: Destructor. Does nothing. returns: void

 void Upper_Case::modify(STRING & string)
 Description: Convert string to Upper case using toupper().
returns: void

 FILES

 Upper_Case.C Upper_Case.H

- 172- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2 GATEC Application

Gatec.dui is an application that fulfills the user interface
requirements for the GATEC project. It allows a user to perform
various procurement tasks related to the GATEC system. It uses
DUI(see DUI(1)) for its user interface, interacts with a data base
through the NARQ(see NARQ) and NORA(see NORA) libraries
and produces CDF formatted documents through the CDFDB(see
CDFDB) library. It is written in C++. To get a user perspective
on the gatec.dui application see GATEC User's Guide [REF000]

 It is comprised of a number of forms that allow the user to review
and edit procurement data in the database and issue electronic
documents.

 The following sections give a techical overview of the
gatec.dui application.

2.2.1 Class Hierarchy

 The gatec.dui application has the following class hierarchy,
indentation denotes derivation:

(DUI_Form) - defined in DUI(1)
 Award_Form
 Compose_Message_Form
 Flag_Selection
 Message_Form
 Quote_Abstract_Form
RFQ_Category
 Review_Quote_Form
 Review_RFQ_Form
 Vendor_Performance_Form
 Workload_Form

 All classes are DUI_Form's except for RFQ_Category.
RFQ_Category is a class for dealing with the categories
displayed on the Workload_Form.

 See the individual documentation on these classes for more
details.

- 173- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.2 Programming Hints

The documentation for the individual form classes should be
consulted for the specific function of the gatec.dui application that
they fulfill. Also the DUI and NARQ and NORA man pages
should be consulted because this will clarify a lot of the code used
in gatec.dui.

For the most part gatec.dui is a database access program. So the
bulk of the code is querying and updating database tables and
filling in and taking values from the fields and texts in the gatec
forms. All of the code that does this accessing is in the member
functions of the form classes.

2.2.3 GATEC DUI Source Tree

 The source for gatec.dui is kept under the DUI(1) source tree in:
 $CVSROOT/dui/applications/gatec

 It depends on the NARQ and NORA libraries being in:
 $CVSROOT/narqdb/lib

 and the cdfdb and DUI libraries being in:
 $CVSROOT/dui/lib

 These must be made before the gatec.dui application can be
made. To make the gatec.dui application, cd to its source directory
and type:

 xmkmf; make depend all

 The resulting "gatec.dui" file will be installed in:
 $CVSROOT/dui/bin

2.2.4 GATEC Form Classes

The gatec,dui forms are comprised of the following classes:

Award_Form
Compose_Message_Form

- 174- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Flag_Selection
Message_Form
Quote_Abstract_Form
RFQ_Category
Review_Quote_Form
Review_RFQ_Form
Vendor_Performance_Form
Workload_Form

- 175- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.1 Award_Form

NAME

 Award_Form - This form diplays information for the awarding
process.

 SYNOPSIS

 #include "Award_Form.H"

 class Award_Form : public DUI_Form { public:
 static Award_Form *instance(const char *rfq, const char *rfq_line_item, const char *quote_id,
int category);
 ~Award_Form();
 void load_data(const char *rfq, const char *rfq_line_item, const char *quote_id);
 void cancel_award();
 void cancel_award_dialog();
 void quit_award();
 void check_large_business();
 void get_order_statements();
 int create_cancel_cdf();
 protected:
 Award_Form();
 private:
 int category_;
 static Award_Form *instance_;
 STRING piin_string;
 void commit_award();
 void clear_data();
 int save_data();
 void construct_database_tables();
 void calculate_data();
 void load_award_data(const char *rfq, const char *rfq_line_item, const char *quote_id);
 char *upload_filename;
 #ifdef CDF void generate_850(STRING &, char * = 0, char * = "bcasupload");
 #endif

 DUI_Field *award_number;
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Field *contract;
 DUI_Field *date;
 DUI_Toggle *acknowledgement_required;
 DUI_Field *order_statements;
 DUI_Field *quantity;
 DUI_Field *unit;
 DUI_Field *unit_price;
 DUI_Field *transaction_totals;
 DUI_Field *delivery;

- 176- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Field *awardees_name;
 DUI_Field *bcas_vendor_code;
 DUI_Field *do_rating;
 DUI_Field *bsp;
 DUI_Field *fob_point;
 DUI_Field *variation;
 DUI_Field *discount_percent;
 DUI_Field *discount_due_days;
 DUI_Field *discount_net_due_days;
 DUI_Field *negotiation_authority;
 DUI_Field *competition_code;
 DUI_Field *confirm;
 DUI_Command *award_cmds;
 DUI_Command *view_cmds;
 DUI_Group *alb_group;
 DUI_Group *alb_shared_group;
 DUI_Selection *alb_reason_selection;
 Callback *quit_award_callback;
 Callback *commit_alb_callback;
 Callback *commit_award_callback;
 DUI_Text *order_text;
 DUI_Group *cancel_group;
 DUI_Group *no_reopen_group;
 DUI_Group *cancel_shared_group;
 DUI_Selection *cancel_supp_piin;
 DUI_Field *cancel_activity_no;
 DUI_Field *cancel_cac;
 DUI_Selection *cancel_reason;
 DUI_Field *cancel_eff_date;
 DUI_Selection *cancel_ftd;
 DUI_Selection *cancel_no_reopen;
 DUI_Toggle *cancel_cont_sign;
 DUI_Field *cancel_no_copies;
 DUI_Field *cancel_sus_date;
 DUI_Toggle *cancel_oe;
 DUI_Toggle *cancel_prs_to_cust;
 DUI_Toggle *cancel_with_reopen;
 DUI_Field *cancel_order_stats;
 DUI_Toggle *cancel_spec_contr;
 DUI_Text *cancel_reason_text;
 Callback *cancel_award_dialog_callback;
 Callback *cancel_award_callback;
 DUI_Field *cancel_new_rfq_no;
 #ifndef NODB Document *doc;
 QuoteLineItem *quote_li;
 Quote *quote;
 Award *award;
 AwardLineItem *award_li;
 BCASAward *baward;
 QuoteTerms *qt;

- 177- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 FreeOnBoard *fob;
 GSDefaults *gsd;
 ISADefaults *isad;
 Acquisition *acq;
 ReqForQuoteLineItem *rfq_li;
 Stmnt *stmt;
 #endif }

 DESCRIPTION

 This form contains the data necessary for a buyer to make or
cancel an award using the GATEC system. It accesses the
following tables (see NARQ):
 Acquisition, Award, AwardLineItem, BCASAward,
Document, DocumentAddressee, DocumentSent, FreeOnBoard,
GSDefaults, ISADefaults, LineItem, Part, Quote,
QuoteLineItem, QuoteTerms, RelatedPaperwork, ReqForQuote,
ReqForQuoteLineI tem, SADBU, Ship, Stmnt ,
SolicitationLineItem, Vadrs, Vendor, NarqUtil ,
UserManagerDefaults

 There is only one instance of an Award_Form in an application
at one time.

 MEMBER FUNCTIONS

 Award_Form::instance(const char *rfq, const char
*rfq_line_item, const char *quote_id, int category)
 Description: Public access to constructor, provided because
there is only one instance. Each time it is called it loads the data
associated with its arguments. When the "category" is Awarded
the only action allowed is canelling. returns: Award_Form *, the
Award_Form instance.

 Award_Form::Award_Form()
 Description: Constructor for Award_Form. All the DUI widgets
and callbacks used on the award screen are instantiated here.
returns: void

 Award_Form::construct_database_tables()
 Description: Construct needed database tables, ignore
uninteresting columns. All the tables used on the class level are
instantiated here. returns: void

 Award_Form::~Award_Form()
 Description: Destructor for Award_Form. Deletes call-backs and
class level tables. returns: void

 Award_Form::clear_data()
 Description: Clears the values for all the displayed widgets.
returns: void

- 178- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Award_Form::calculate_data()
 Description: Calculate values (and hard-coded defaults requested
by WPAFB). returns: void

 Award_Form::load_data(const char *rfq, const char
*rfq_line_item, const char *quote_id) Description: Loads data
from database for this rfq and award. returns: void

 Award_Form::load_award_data(const char *rfq, const
char *rfq_line_item, const char *quote_id) Description:
 Loads award data from database (used for reviewing old awards).
returns: void

 Award_Form::quit_award()
 Description: Quits without awarding this one. Resets requested
piin so it may be used again. returns: void

 Award_Form::check_large_business()
 Description: If award is to a large business, pops up reason for
dissolution Dialog, else commits award to database. Also checks
the BCAS vendor code to make sure it is 7 characters long
displaying an error message if not. returns: void

 Award_Form::cancel_award_dialog()
 Description: Cancel an existing award. Displays the cancel
award Dialog. returns: void

 Award_Form::cancel_award()
 Description: Cancel Award. This displays a no reopen Dialog if
more information is required else goes ahead and cancels the
award. returns: void

 Award_Form::create_cancel_cdf()
 Description: Write CDF which will allow gateway script to
actually initiate the cancellation or ammendment of the award.
After writing the CDF, it will be placed on the bcascancel queue.
returns: int, 1 if successful, 0 otherwise.

 Award_Form::get_order_statements()
 Description: Lets the user modify the full text of the order
statements as well as "care of" information. returns: void

 Award_Form::commit_award()
 Description: Writes award info to database and loads next RFQ
into Review_RFQ_Form. returns: void

 Award_Form::save_data()
 Description: Saves field values to database. returns:
 int, 1 if success, 0 if commits failed.

- 179- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 *queueName)
 Award_Form::generate_850(STRING &errmsg, char
*cdfFilename, char Description: Queries the tables that are needed
in call to _850DBtoDCF() but are not populated yet and calls
aforementioned. returns: void

 FILES

 Award.C Award.H

- 180- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.2 Compose_Message_Form

NAME

 Compose_Message_Form - The form used to compose a message.

 SYNOPSIS

 #include "Compose_Message_Form.H"

 class Compose_Message_Form : public DUI_Form { public:
 static Compose_Message_Form *instance(const char *new_rfq_number, const
char *new_line_item, const char *reply_to = 0, const char *reply_subject = 0,
const char *reply_ref_num = 0, const char *reply_doc_id = 0);
 ~Compose_Message_Form();
 void attach_note();
 void send_message();
 protected:
 Compose_Message_Form();
 private:
 static Compose_Message_Form *instance_;
 const char *reference_number;
 void setup(const char *new_rfq_number, const char *new_line_item, const char *reply_to,
const char *reply_subject, const char *reply_ref_num, const char *reply_doc_id);
 STRING *reply_document_id;
 void generate_864(const char *st02, const char *ref02, const char *mit01,
const char *dtm02);
 void save_data(const char *status, boolean send_864 = No);
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Field *date;
 DUI_Field *to;
 DUI_Field *from;
 Gatec(2) Last change: Tue Jan 4 16:20:08 1994 1

 Compose_Message_Form(2) Gatec Manual Compose_Message_Form(2)
 DUI_Field *subject;
 DUI_Text *message_body;
 }

 DESCRIPTION

 This form is used to compose an outgoing message to a vendor or
attach an internal note to a utn number. It accesses the following
tables(see NARQ):
 Document, DocumentAddressee, DocumentSent, GSDefaults,
ISADefaults, Message, MessageFrom, MessageReference,
MessageTextBody, MessageTo, UserManagerDefaults, Vendor,

 There is only one instance of a Compose_Message_Form in an
applcation at one time.

- 181- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 MEMBER FUNCTIONS

 Compose_Message_Form: : in s t ance (cons t cha r
*new_rfq_number, const char *new_line_item, const char
*new_to, const char *reply_subject, const char *reply_ref_num,
const char *reply_document_id) Description: Public access to
constructor, provided because there is only one instance. Data
passed is passed on to setup(). Which loads information for
this usage of instance. returns: Compose_Message_Form *, the
instance.

 Compose_Message_Form::setup(const char *new_rfq_number,
const char *new_line_item, const char *new_to, const char
*reply_subject, const char *reply_ref_num, const char
*reply_doc_id) Description: Loads message_abstract with data.
If message is a reply it loads the original message in marked as
reply to text. returns: void

 Compose_Message_Form::Compose_Message_Form()
 Description: Constructor for Compose_Message_Form. All the
widgets used on the form are constructed here. returns: void

 Compose_Message_Form::~Compose_Message_Form()
 Description: Destructor for Compose_Message_Form.

 Gatec(2) Last change: Tue Jan 4 16:20:08 1994 2

 Compose_Message_Form(2) Ga t ec Manua l
Compose_Message_Form(2)
 Deletes reply_document_id. and resets the instance variable.
returns: void

 Compose_Message_Form::attach_note()
 Description: Attach message as a buyer note (internal note).
returns: void

 Compose_Message_Form::send_message()
 Description: Save message as Sent message. Calls save_data()
to save and generate an 864. returns: void

 gen_864)
 Compose_Message_Form::save_data(const char *status,
boolean Description: Saves data to database as an 864. returns:
void

 Compose_Message_Form::generate_864(const char *doc_id,
const char *utn, const char *mit01,
const char *dtm02) Description: Generates 864 text. The X12
864 document is generated directly from this function, as opposed

- 182- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

to other areas in the application where calls are made to functions
named _XXXDBtoCDF() where the X's stand for the document
type name. returns: void

 FILES

 Compose_Message.C Compose_Message.H

- 183- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.3 Flag_Selection

NAME

 Flag_Select ion - Special ized select ion for the
Quote_Abstract_Form.

 SYNOPSIS

 #include "Flag_Selection.H"

 class Flag_Selection: public DUI_Selection { private:
 List_of(DUI_Toggle) toggles;
 List_of(STRING) flag_values;
 public:
 virtual ~Flag_Selection();
 Flag_Selection(const char * name , DUI_Toggle * = 0, DUI_Toggle * = 0,
DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0,
DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0);
 virtual void append_toggle(DUI_Toggle *, DUI_Toggle * = 0, DUI_Toggle * = 0,
DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0,
DUI_Toggle * = 0, DUI_Toggle * = 0, DUI_Toggle * = 0);
 virtual void select(const DUI_Component *);
 virtual void select(const char *);
 virtual void append(const char *label, const char *flags);
 virtual void append(DUI_Component *, const char *flags);
 virtual void insert(int, const char *label, const char *flags);
 virtual void insert(int, DUI_Component *, const char *flags);
 virtual DUI_Component *remove(int);
 virtual DUI_Component *remove(int , STRING &flags);
 virtual const char * flags(int) const;
 virtual void flags(int, const char *);
 virtual void append(const char *);
 virtual void append(DUI_Component * , DUI_Component * = 0, DUI_Component
* = 0, DUI_Component *
 Flag_Selection(2) Gatec Manual Flag_Selection(2)
 = 0, DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0,
DUI_Component * = 0, DUI_Component * = 0, DUI_Component * = 0);
 virtual void insert(int, const char *);
 virtual void insert(int, DUI_Component *);
 protected:
 friend class Session;
 void receive();
 }

 DESCRIPTION

 This class is used by the Quote_Abstract_Form for the selection
that displays the quotes. It is used to update the flags (on that
form) that display information about the quote whenever a a
quote is selected. Basically it is a DUI_Selection that can have

- 184- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

toggles attached to it that get updated whenenver the selection
status changes. The values for each toggle are kept in a string of 0's
and 1's which is associated with an entry in the selection.

 MEMBER FUNCTIONS

 t1, Flag_Selection::Flag_Selection(const char *name,
DUI_Toggle * DUI_Toggle * t2, DUI_Toggle * t3,
DUI_Toggle * t4, DUI_Toggle * t5, DUI_Toggle
* t6, DUI_Toggle * t7, DUI_Toggle * t8,
DUI_Toggle * t9, DUI_Toggle * t10) Description:
Constructor for Flag_Selection accepting a name and up to ten
toggles. returns: void

 Flag_Selection::~Flag_Selection()
 Description: Destructor for Flag_Selection. returns:
 void

 void Flag_Selection::append_toggle(DUI_Toggle * t1,
DUI_Toggle * t2, DUI_Toggle * t3, DUI_Toggle * t4,
DUI_Toggle * t5, DUI_Toggle * t6, DUI_Toggle * t7,
DUI_Toggle * t8, DUI_Toggle * t9, DUI_Toggle * t10)
 Description: Append up to ten more toggles to this
Flag_Selection. returns: void

 Flag_Selection::append(DUI_Component *component, const
char Description: Appends a component and its flags to this
selection. The flags specify the toggle states for this component.
returns: void

 Flag_Selection::append(const char *label, const char *flags)
 Description: Appends a label to the selection with its flags.
returns: void

 Flag_Selection::insert(int i, DUI_Component *c, const char
Description: inserts a component into this selection with its flags.
returns: void

 Flag_Selection::insert(int i, const char *label, const char
Description: Inserts a label into this selection with its flags.
returns: void

 Flag_Selection::remove(int i)
 Description: Removes a component and its flags from the
selection. returns: DUI_Component *, the removed component.

 Flag_Selection::remove(int i, STRING &flags)
 Description: Removes a component and its flags but sets the flags
argument to the flags that were removed. returns:
DUI_Component *, the removed component.

- 185- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Flag_Selection::flags(int i)
 Description: Accessor function. returns: char *, the flags for the
item indexed by i.

 Flag_Selection::flags(int i, const char *flags)
 Description: Sets the flags for item "i" in the selection. returns:
void

 void Flag_Selection::append(DUI_Component *c1,
DUI_Component *c2, DUI_Component *c3, DUI_Component
*c4, DUI_Component *c5, DUI_Component *c6,
DUI_Component *c7, DUI_Component *c8, DUI_Component
*c9, DUI_Component *c10) Description: Overloads the
DUI_Selection(which see) append routine. returns: void

 void Flag_Selection::append(const char *label)
 Description: Overloads the DUI_Selection(which see)
 routine. returns: void

 void Flag_Selection::insert(int i, DUI_Component *c)
 Description: Overloads the DUI_Selection(which see)
 routine. returns: void

 void Flag_Selection::insert(int i, const char *label)
 Description: Overloads the DUI_Selection(which see)
 routine. returns: void

 Flag_Selection::receive()
 Description: Change the DUI_Toggles to match flags for selected
component Flag values are a string of chars, 0 = ON, 1 = OFF, T =
TOGGLE, else = same . for example, (using 0-indexing): "01
10T" means flag 0 and 4 OFF, 1 and 3 ON, 2 unchanged, 5
TOGGLE returns: void

 FILES

 Flag_Selection.C Flag_Selection.H

- 186- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.4 Message_Form

NAME

 Message_Form - Form for displaying the message viewing
screen.

 SYNOPSIS

 #include "Message_Form.H"

 class Message_Form : public DUI_Form { public:
 enum { Error_Message = 0, Unread, Needs_Action, Internal_Note, Read, Sent, Same };
 static Message_Form *instance(const char *new_rfq_number, const char
*new_line_item, int new_message_category = Same);
 static Message_Form *instance();
 static void count_by_rfq(const char *rfq_num, const char *line_item, STRING
&counts);
 static char message_priority(const char *rfq_num, const char *line_item);
 ~Message_Form();
 void change_message_category();
 void compose_message();
 void needs_action();
 void action_complete();
 void delete_note();
 void reply();
 void load_message_block();
 void view_rfq();
 void view_message();
 void quit_messages();
 void display_messages(ostream &);
 protected:
 Message_Form();
 protected:
 friend class Compose_Message_Form;
 void load_messages();
 Gatec(2) Last change: Tue Jan 4 16:20:03 1994 1

 Message_Form(2) Gatec Manual Message_Form(2)
 private:
 static Message_Form *instance_;
 int category;
 int stealth;
 List_of(STRING) document_ids;
 List_of(STRING) froms;
 List_of(STRING) from_cages;
 List_of(STRING) tos;
 List_of(STRING) dates;
 List_of(STRING) subjects;
 List_of(STRING) ref_nums;

- 187- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int last_message_index;
 void change_category(int new_message_category);
 void setup(const char *new_rfq_number, const char *new_line_item, int
new_message_category);
 void add_message(const char *to, const char *from, const char *from_cage_code,
const char *date, const char *subject, const char *reference_num, const char
*document_id);
 static int count_messages(int cat, const char *rfq_number, const char *line_item);
 void count_all_messages();
 void load_data();
 void save_data();
 void update_category(int new_category, int use_last_message = 0);
 DUI_Label **category_count;
 DUI_Command **category_command;
 DUI_Command **category_actions;
 DUI_Label *category_label;
 DUI_Label *category_text;
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Selection *message_abstract;
 DUI_Text *message_body;
 DUI_Command *compose_cmd;
 /*DUI_Command *view_message_cmd;*/ DUI_Command *needs_action_cmd;
 DUI_Command *action_complete_cmd;
 DUI_Command *delete_note_cmd;
 DUI_Command *reply_cmd;
 DUI_Command *load_more_cmd;
 }

 DESCRIPTION

 This form implements a simple mail viewer for messages
across 6 categories:

 Error, Unread, Needs Action, Note, Read, and Sent

 It contains 6 DUI_Commands to switch between these six
categories as well as a DUI_Selection which shows the list of
messages in the current category, and a DUI_Text that shows the
current selected message in that category.

 It accesses the following tables(see NARQ):
 Documen t , Message , MessageTo , MessageFro m
MessageReference, MessageTextBody, SolicitationLineItemError,
Text

 There is only one instance of a message screen in an application
at one time.

 MEMBER FUNCTIONS

- 188- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Message_Form::instance(const char *new_rfq_number, const
char *new_line_item, int new_category) Description:
Public access to constructor, provided because there is only one
instance. Calls setup with passed data to set up this instance.
returns: Message_Form *, the instance.

 Message_Form::setup(const char *new_rfq_number, const char
*new_line_item, int new_category) Description: Loads
message_abstract with data. returns: void

 Message_Form::load_messages()
 Description: Loads messages into selection. returns:
 void

 Message_Form::add_message(const char *to, const char
*from, const char *from_cage_code, const char
*date, const char *subject, const char
*reference_num, const char *document_id
) Description: Adds one line to the message_abstract and saves
data to data_arrays. returns: void

 Message_Form::count_all_messages()
 Description: Counts the number of messages in each category.
NOTE that these counts reflect the number of 864s, but the
message_abstract selection has 1 entry per text per 864 returns:
void

 Message_Form::Message_Form()
 Description: Constructor for Message_Form. All DUI widgets
used are created here. returns: void

 Message_Form::~Message_Form()
 Description: Destructor for Message_Form. Deletes commands
and resets instance. returns: void

 Message_Form::change_category(int new_category)
 Description: Changes the form to reflect a new category.
returns: void

 use_last_message)
 Message_Form::update_category(int new_category, int
Description: moves message to new_category if last_message ==
1, moves message currently in message_text otherwise moves
currently selected message removes it from abstract, changes
counts. returns:
 void

 Message_Form::change_message_category()
 Description: Callback for category buttons. Changes category
depending on which category was selected. returns: void

- 189- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Message_Form::quit_messages()
 Description: Quit view. Updates category if an unread message
was read. returns: void

 Message_Form::reply()
 Description: Sends the Compose_Message_Form(which see)
 with current message included. returns: void

 Message_Form::view_rfq()
 Description: Bring up the Review_RFQ_Form(which see) if
rfq_number and line_item are not empty. returns: void

 Message_Form::compose_message()
 Description: Sends the Compose_Message_Form. returns:
 void

 Message_Form::needs_action()
 Description: Marks a messages as needing action. returns: void

 Message_Form::action_complete()
 Description: Marks a message as no longer needing action.
returns: void

 Message_Form::delete_note()
 Description: Deletes a note. returns: void

 Message_Form::load_message_block()
 Description: Loads another block of messages - NOT USED
CURRENTLY. returns: void

 Message_Form::view_message()
 Description: Loads message text into message_body. returns:
void

 Message_Form::count_messages(int cat, const char
*rfq_number, const char *line_item) Description: Returns the
number of Messages in category 'cat' for rfq_number- line_item.
returns: int, the number of messages.

 Message_Form::count_by_rfq(const char *rfq_num, const char
*line_item, STRING &counts) Description: Fills in counts with
number of messages in each message category. Fills in 1st found
w i t h a b r e v i a t i o n f o r f i r s t . r e t u r n s : v o i d
Message_Form::message_priority(const char *rfq_num, const
char *line_item) Description: Returns the highest priority
message referencing rfq_num & line_item only checks for Error,
Unread, or Needs_Action messages. This is used by the
Workload_Form for displaying a flag beside an RFQ in its list if
it has a priority message. returns: char, 'E', 'U', 'N' or ' ' denoting

- 190- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

priority.

 Message_Form::display_messages(ostream &out)
 Description: Displays each message to out stream in a simple
ascii format. returns: void

 FILES

 Message.C Message.H

- 191- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.5 Quote_Abstract_Form

NAME

 Quote_Abstract_Form - Form for displaying an abstract of
quotes for an RFQ.

 SYNOPSIS

 #include "Quote_Abstract_Form.H"

 class Quote_Abstract_Form : public DUI_Form { public:
 static Quote_Abstract_Form *instance();
 static Quote_Abstract_Form *instance(const char *new_rfq_number, const char
*new_line_item, const char *new_req_number, const char *new_fsc, const char
*new_fsc_suffix, const char *new_priority, const char *new_stock_number, const char
*new_estimated_price, const char *new_quantity, const char *new_unit, const char
*new_extended_price, const char *new_sic, const DUI_Text *new_item_description, int
new_amended, const DUI_Text *new_price_history, int category);
 static Quote_Abstract_Form *instance(const char *new_rfq_number, const char
*new_line_item, int category);
 ~Quote_Abstract_Form();
 void view_messages();
 void review_quote();
 void add_quote();
 void make_award();
 void confirm_make_award();
 void cancel_make_award();
 void hold_rfq();
 void redirect_rfq();
 void review_rfq();
 static void clear_data();
 void display_abstract(ostream &);
 protected:
 private:
 static Quote_Abstract_Form *instance_;
 int category_;
 void setup(const char *new_rfq_number, const char *new_line_item, const char
*new_req_number, const char *new_fsc, const char *new_fsc_suffix, const char
*new_priority, const char *new_stock_number, const char *new_estimated_price, const char
*new_quantity, const char *new_unit, const char *new_extended_price, const char *new_sic,
const DUI_Text *new_item_description, int new_amended, const DUI_Text
*new_price_history, int category);
 void load_quotes(const char *rfq_num, const char *line_item);
 int unread_messages_for_vendor(const char *vendor_id, const char
*utn_number);
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Field *requisition_number;
 DUI_Field *fsc;

- 192- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Field *fsc_suffix;
 DUI_Field *priority;
 DUI_Field *message_count;
 DUI_Toggle *amended;
 DUI_Field *stock_number;
 DUI_Text *item_description;
 DUI_Field *quantity;
 DUI_Field *estimated_price;
 DUI_Field *unit;
 DUI_Field *extended_price;
 DUI_Text *price_history;
 Flag_Selection *quote_selection;
 DUI_Group *flag_group;
 DUI_Toggle **quote_flags;
 DUI_Command *award_cmd;
 DUI_Command *add_quote_cmd;
 DUI_Command *hold_rfq_cmd;
 DUI_Command *redirect_rfq_cmd;
 DUI_Command *quit_cmd;
 Callback *confirm_make_award_callback;
 Callback *cancel_make_award_callback;
 List_of(STRING) *quote_ids;
 #ifndef NODB ReqForQuote *rfq;
 #endif

 STRING sic;
 int num_low_quotes;
 static float low_small_business_price_;
 private:
 friend class Award_Form;
 static float low_small_business_price() { return low_small_business_price_; }
 }

 DESCRIPTION

 This form displays a list of the quotes received for a closed
RFQ. The Quotes are displayed in a Flag_Selection(which see)
which has a list of toggles associated with it that are turned on and
off depending on which quote is selected. This form is
instantiated by the Workload_Form under the closed category. It
allows the RFQ to be awarded to one of the quotes listed. It also
allows the RFQ to be held or redirected. The Forms that can be
instantiated by this form are:

 Message_Form(which see), Review_Quote_Form(which see),
Award_Form(which see), Review_RFQ_Form(which see)
 This form accesses the following tables:

 Acquisition(which see), Document(which see), ReqForQuote(which see),
ReqForQuoteLineItem(which see), LineItem(which see), Part(which see), Quote(which see),

- 193- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

QuoteLineItem(which see), QuoteTerms(which see), Variations(which see),
RelatedPaperwork(which see), SolicitationLineItem(which see), SolicitationHistory(which
see), MessageFrom(which see), Vendor(which see)
 There is only one instance of the form in an application at one time.

 MEMBER FUNCTIONS

 Quote_Abstract_Form * Quote_Abstract_Form::instance_ = 0;
 float Quote_Abstract_Form::low_small_business_price_ = 0;
 Quote_Abstract_Form * Quote_Abstract_Form::instance()
 Description: This function returns the instance_ pointer whatever the value is. returns:
 Quote_Abstract_Form *, the instance or 0.

 Quote_Abstract_Form::instance(const char *new_rfq_number, const char
*new_line_item, const char *new_req_number, const char *new_fsc, const char
*new_fsc_suffix, const char *new_priority, const char *new_stock_number, const
char *new_estimated_price, const char *new_quantity, const char *new_unit, const
char *new_extended_price, const char *new_sic, const DUI_Text *new_item_description,
int new_amended, const DUI_Text *new_price_history, int category) Description:
Public access to constructor, provided because there is only one instance. Calls setup() to
set up the instance. returns:
 Quote_Abstract_Form *, the instance.

 Quote_Abstract_Form::instance(const char *new_rfq_number, const char
*new_line_item, int category) Description: Public access to constructor, provided
because there is only one instance. returns:
 Quote_Abstract_Form *, the instance.

 Quote_Abstract_Form::setup(const char *new_rfq_number, const char *new_line_item,
const char *new_req_number, const char *new_fsc, const char *new_fsc_suffix,
const char *new_priority, const char *new_stock_number, const char
*new_estimated_price, const char *new_quantity, const char *new_unit, const char
*new_extended_price, const char *new_sic, const DUI_Text *new_item_description, int
new_amended, const DUI_Text *new_price_history, int category) Description: Sets up
this instance given the arguments. Calls load_quotes() to fill the quote list. returns: void

 Quote_Abstract_Form::~Quote_Abstract_Form()
 Description: Destructor. Resets instance, removes all quotes and
quote flags, deletes "rfq" table. returns:
 void

 Quote_Abstract_Form::Quote_Abstract_Form()
 Description: Constructor for Quote_Abstract_Form.
Instantiates "rfq" table and all of the DUI_Widgets required for
this form. returns: void

 *lineItem)
 Quote_Abstract_Form::load_quotes(const char *rfq_num, const
char Description: Loads the quote abstract with the quotes for this
RFQ setting up the flags as well. returns:

- 194- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void

 Quote_Abstract_Form::view_messages()
 Description: Pop up the Message_form with correct rfq and
line_item. returns: void

 Quote_Abstract_Form::review_quote()
 Description: Review the selected quote. Instantiates the
Review_Quote_Form (which see). returns: void

 Quote_Abstract_Form::make_award()
 Description: Calls comfirm_make_award() if user has selected
the lowest quote, otherwise pops up a dialog warning the user.
returns: void

 Quote_Abstract_Form::confirm_make_award()
 Description: Brings up the Award_Form(which see). returns:
void

 Quote_Abstract_Form::cancel_make_award()
 Description: Brings up the quote absract again. returns: void

 Quote_Abstract_Form::review_rfq()
 Description: Instantiates the Review_RFQ_Form(which see).
returns: void

 Quote_Abstract_Form::hold_rfq()
 Description: Instantiates the Review_RFQ_Form(which see) and
calls its hold_rfq(). returns: void

 Quote_Abstract_Form::redirect_rfq()
 Description: Instantiates the Review_RFQ_Form(which see) and
calls its redirect_rfq(). returns: void

 Quote_Abstract_Form::add_quote()
 Description: Instantiates the Review_Quote_Form(which see)
which can act as a data entry screen for adding a quote from
scratch. returns: void

 Quote_Abstract_Form::clear_data()
 Description: Clears all the fields on this form. returns: void

 Quote_Abstract_Form::display_abstract(ostream &out)
 Description: Print a simple ascii representation of the quote list,
Award_Form data if there is any, and the quote flags onto stream
"out". returns: void

 Quote_Abstract_Form::unread_messages_for_vendor(
const char *vendor_id, const char *utn_number
) Description: Checks to see if there are any unread messages

- 195- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

for the passed vendorid, and utnnumber. returns: int 1 if yes, 0 if
no.

 FILES

 Quote_Abstract.C Quote_Abstract.H

- 196- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.6 RFQ_Category

NAME

 RFQ_Category - Class to handle the lists of RFQs in each
workload category.

 SYNOPSIS

 #include "RFQ_Category.H"

 class RFQ_Category { private:
 static RFQ_Category *category_ptrs[NUM_CATEGORIES];
 static int total_rfqs;
 DUI_Group *rfq_group_;
 List_of(STRING) doc_ids_;
 DUI_Label *count_label_;
 DUI_Command *command_;
 short database_queried_;
 int rfqs_in_category_;
 int max_rfqs_shown_;
 int category_;
 public:
 static void initialize(DUI_View *view, Callback *callback);
 static RFQ_Category *instance(int i) { return category_ptrs[i]; }
 void append_rfq(DUI_Component *rfq_label, const char *doc_id);
 void get_rfq(int i, DUI_Component *rfq_label, STRING &doc_id);
 int move_rfq(int i, int new_category);
 int move_rfq(const char *document_id, int new_category);
 int remove_rfq(const char *document_id);
 void remove_rfq(int i);
 void load_rfqs(int show_more_rfqs = 0);
 DUI_Label *count_label() { return count_label_; }
 DUI_Command *command() { return command_; }
 DUI_Group *rfq_group() { return rfq_group_; }
 short database_queried() { return database_queried_; }
 void database_queried(int l) { database_queried_ = l;
 }
 const char * name() { return category_name[category_]; }
 const char * description() { return category_desc[category_]; }
 const char * db_code() { return category_db[category_]; }
 int rfqs_shown() { return rfq_group_- >component_count(); }
 void update_rfq(const char *rfq, const char *line_item, const char *fsc, const char
*item_description);
 void update_rfq(const char *rfq, const char *line_item, char message_priority);
 private:
 RFQ_Category(int cat, DUI_Command *command);
 int count_rfqs();
 void query_rfqs();
 void change_count_label();

- 197- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 private:
 Document *document_;
 Acquisition *acquisition_;
 ReqForQuote *rfq_;
 FetchedRows *doc_rows_;
 ComplexQuery *doc_query_;
 }

 DESCRIPTION

 This class is used to retrieve and control the lists of RFQs in each
of the buyer workload categories:

 Unissued, Unissued Held, Open, Closed, Closed Held, Overdue,
Awarded

 There is an instance of this class for each of these categories.

 It queries the database as little as possible to increase speed, but
this can mean that what is contained in this class does not
necessarily reflect the state of the data base at every moment. It
queries the following tables:
 Acquisition(which see), Document(which see),
ReqForQuoteLineItem(which see), ReqForQuote(which see)

 MEMBER FUNCTIONS

 RFQ_Category::initialize(DUI_View *view, Callback *callback)
 Description: Public access to set up all categories, it creates each
Category, counts RFQs, and changes count labels. returns: void

 RFQ_Category::RFQ_Category(int cat, DUI_Command *command)
 Description: Constructor for RFQ_Category class. Creates tables
and initializes controls. returns: void

 RFQ_Category::append_rfq(DUI_Component *rfq_label, const char
Description: Adds an RFQ to the current category. returns: void

 RFQ_Category::get_rfq(int i, DUI_Component *rfq_label, STRING
Description: Returns an RFQ from this category by setting the last two
arguments. returns: void

)
 RFQ_Category::move_rfq(const char *document_id, int new_category
Description: Moves RFQ with document_id from this category to
new_category. returns: the return value of move_rfq(int, int) (1 if
successful, 0 otherwise).

 RFQ_Category::move_rfq(int i, int new_category)
 Description: Moves RFQ i from this category to new_category
and loads the next RFQ in this category. returns: int, 1 when

- 198- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

successful, 0 otherwise.

 RFQ_Category::remove_rfq(const char *document_id)
 Description: Removes RFQ with document_id from this
category. returns: 1 if successful, 0 otherwise.

 RFQ_Category::remove_rfq(int i)
 Description: Removes RFQ i from this category and loads next
RFQ in this category. returns: void

 RFQ_Category::count_rfqs()
 Description: Counts RFQs in current category. returns:
 int, count.

 RFQ_Category::change_count_label()
 Description: Changes the label for this RFQ_Category to reflect
count and percentage. returns: void

 RFQ_Category::load_rfqs(int show_more_rfqs)
 Description: Loads rfqs from database - shows
"show_more_rfqs" more rfqs than before. returns: void

 RFQ_Category::query_rfqs()
 Description: Create query for RFQs. returns: void

 RFQ_Category::update_rfq(const char *rfq, const char
*line_item, const char *fsc, const char *item_description
) Description: Updates RFQ line when user changes
item_description or fsc. returns: void

 RFQ_Category::update_rfq(const char *rfq, const char
*line_item, char message_priority) Description:
 Updates RFQ line when user changes message_priority. returns:
void

 FILES

 RFQ_Category.C RFQ_Category.H

- 199- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.7 Review_Quote_Form

NAME

 Review_Quote_Form - Form for reviewing or adding a quote.

 SYNOPSIS

 #include "Review_Quote_Form.H"

 class Review_Quote_Form : public DUI_Form { public:
 static Review_Quote_Form *instance(const char *rfq, const char *line, const char *quote_id,
const char *flag_values, const DUI_Text *item_desc, int category);
 static Review_Quote_Form *instance(const char *rfq, const char *line, const char
*stock_num, const char *est_price, const char *fsc_value, const char *sic_value, const
DUI_Text *item_desc);
 ~Review_Quote_Form();
 void load_data(const char *rfq, const char *line, const char *quote_id, const char
*flag_values, const DUI_Text *item_desc);
 void view_messages();
 void compose_message();
 void vendor_info();
 void make_award();
 void commit_add();
 static void clear_data();
 protected:
 Review_Quote_Form();
 private:
 static Review_Quote_Form *instance_;
 void review_quote(const char *rfq, const char *line, const char *quote_id, const char
*flag_values, const DUI_Text *item_desc, int category);
 void add_quote(const char *rfq, const char *line, const char *stock_num, const char
*est_price, const char *fsc_value, const char *sic_value, const DUI_Text *item_desc);
 void change_read_only(boolean ro);
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Field *stock_number;
 DUI_Field *estimated_price;
 DUI_Field *fsc;
 DUI_Field *sic;
 DUI_Text *item_description;
 DUI_Field *vendor_cage_code;
 DUI_Field *vendor_name;
 DUI_Field *quote_effective_date;
 DUI_Field *quote_expires_date;
 DUI_Field *unit_price;
 DUI_Field *quantity;
 DUI_Field *unit;
 DUI_Field *extended_price;
 DUI_Field *delivery_date;

- 200- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Field *discount_percent;
 DUI_Field *discount_due_days;
 DUI_Field *discount_net_due_days;
 DUI_Field *variation;
 DUI_Field *fob;
 DUI_Text *quote_description;
 DUI_Field *vendor_note;
 DUI_Field *flags;
 DUI_Field *requirements_contract;
 DUI_Field *fss_contract;
 DUI_Field *contract_expiration_date;
 DUI_Toggle *small_business;
 DUI_Group *changing_group;
 DUI_Command *review_cmds;
 DUI_Command *add_cmds;
 DUI_Command *quit_cmd;
 DUI_Command *cancel_add_cmd;
 DUI_Command *award_cmd;
 #ifndef NODB Quote *quote;
 QuoteLineItem *quote_li;
 Part *part;
 ReqForQuoteLineItem *rfq_li;
 ReqForQuote *rfq;
 FreeOnBoard *fob_table;
 QuoteTerms *qt;
 #endif }

 DESCRIPTION

 This class is used to review the contents of a quote. It queries the
following tables:

 Quote(which see), QuoteLineItem(which see), Part(which see),
ReqForQuoteLineItem(which see), ReqForQuote(which see),
Message(which see), RelatedPaperwork(which see),
FreeOnBoard(which see), QuoteTerms(which see),
Document(which see)

 There is only one instance of this form in an application at one
time.

 MEMBER FUNCTIONS

 Review_Quote_Form *Review_Quote_Form::instance_ = 0;
 Review_Quote_Form * Review_Quote_Form::instance(const char *rfq, const char *line,
const char *quote_id, const char *flag_values, const DUI_Text *item_desc, int category)
Description: Public access to constructor, provided because there is only one instance. This
instance used for reviewing a quote. returns:
 Review_Quote_Form *, the instance.

- 201- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Review_Quote_Form::instance(const char *rfq, const char *line, const char *stock_num,
const char *est_price, const char *fsc_value, const char *sic_value, const DUI_Text
*item_desc) Description: This instance used for adding a quote. returns:
 Review_Quote_Form *, the instance.

 Review_Quote_Form::Review_Quote_Form()
 Description: Constructor for Review_Quote_Form. Instantiates all the DUI_Widgets used by
this form. returns:
 void

 Review_Quote_Form::~Review_Quote_Form()
 Description: Destructor for Review_Quote_Form. Deletes flags and tables. returns: void

 Review_Quote_Form::change_read_only(boolean ro)
 Description: Changes appropriate field's read_only status. returns: void

 Review_Quote_Form::review_quote(const char *rfq, const char *line, const char *quote_id,
const char *flag_values, const DUI_Text *item_desc, int category) Description: Sets up form
for reviewing quotes. returns: void

 Review_Quote_Form::add_quote(const char *rfq, const char *line, const char *stock_num,
const char *est_price, const char *fsc_value, const char *sic_value, const DUI_Text
*item_desc) Description: Sets up form for adding quotes. returns: void

 Review_Quote_Form::clear_data()
 Description: Clears all components. returns: void

 load_item_desc(QuoteLineItem *quote_li, DUI_Text *item_desc)
 Description: Loads the item description text (this will change as the database changes).
returns: void

 Review_Quote_Form::load_data(const char *rfq_num, const char *line, const char *quote_id,
const char *flag_values, const DUI_Text *item_desc) Description: Loads quote data from
database. returns: void

 Review_Quote_Form::view_messages()
 Description: Instantiates and displays the Message_Form(which see). returns: void

 Review_Quote_Form::compose_message()
 Description: Instantiates and displays the Compose_Message_Form(which see) with
quote reference number passed in. returns: void

 Review_Quote_Form::vendor_info()
 Description: Goes to Vendor performance screen. Not implemented. returns: void

 Review_Quote_Form::make_award()
 Description: Makes the award. Instantiates the Quote_Abstract_Form(which see) and
calls its make_award(). returns: void

 Review_Quote_Form::commit_add()

- 202- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Adds this Quote into the database. returns: void

 FILES

 Review_Quote.C Review_Quote.H

- 203- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.8 Review_RFQ_Form

NAME

 Review_RFQ_Form - form for reviewing an RFQ.

 SYNOPSIS

 #include "Review_RFQ_Form.H"

 class Review_RFQ_Form: public DUI_Form { public:
 static Review_RFQ_Form *instance(const char *rfq, const char *line, int category =
SAME_CATEGORY);
 ~Review_RFQ_Form();
 void view_messages();
 void more_info();
 void issue_rfq();
 void add_quote();
 void save_and_hold_rfq();
 void save_and_redirect_rfq();
 void save_and_view_abstract();
 void amend_rfq();
 void cancel_rfq();
 void quit_review();
 void view_abstract();
 void hold_rfq();
 void redirect_rfq();
 void commit_redirect();
 void commit_hold();
 void cancel_hold();
 void save_and_quit();
 void commit_quit();
 void cancel_quit();
 void confirm_cancel_rfq();
 void confirm_amend_rfq();
 void cancel_amend_rfq();
 void confirm_upload();
 static void clear_data();
 protected:
 Review_RFQ_Form();
 private:
 static Review_RFQ_Form *instance_;
 int save_ok;
 int acq_save_ok;
 int category_;
 DUI_Label *category_label;
 DUI_Label *category_text;
 DUI_Group *info_holder;
 DUI_Group **info_group;
 char *upload_filename;

- 204- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 List_of(STRING) vendor_id_list;
 int current_info;
 void set_values(const char *rfq, const char *line, int category);
 void change_category();
 void load_data(const char *rfq_num, const char *rfq_line_item);
 void save_data();
 int save_data_no_commit();
 void change_info();
 void make_read_write();
 void make_read_only();
 int verify_addressees();
 int issue_840(const char *send_status);
 void upload_to_standard_system();
 void print_rfq();
 #ifdef CDF void generate_840(STRING &);
 #endif

 DUI_Field *rfq_number;
 DUI_Field *line_item;
 DUI_Field *fsc;
 DUI_Field *fsc_suffix;
 DUI_Text *fsc_suffix_description;
 DUI_Field *sic;
 DUI_Field *requisition_number;
 DUI_Field *stock_number;
 DUI_Text *item_description;
 DUI_Field *quantity;
 DUI_Field *unit;
 DUI_Field *required_response_date;
 DUI_Field *required_delivery_date;
 DUI_Field *ship_to_zip;
 DUI_Field *manufacturer;
 DUI_Field *part_number;
 DUI_Field *message_count;
 DUI_Toggle *amended;
 DUI_Toggle *upload_changes;
 DUI_Group *component_group;
 DUI_Label *hold_info;
 DUI_Text *addressees;
 DUI_Text *additional_clauses;
 DUI_Field *paperwork_required;
 DUI_Selection *paperwork_received;
 DUI_Field *rfq_date;
 DUI_Field *buyer_code;
 DUI_Field *priority;
 DUI_Field *extended_price;
 DUI_Field *estimated_price;
 DUI_Field *fund_code;
 DUI_Field *sran;
 DUI_Field *project_code;

- 205- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 DUI_Field *bn_ss;
 DUI_Field *defense_priority_rating;
 DUI_Field *requestor_name;
 DUI_Field *requestor_phone;
 DUI_Text *requestor_source;
 DUI_Field *project_title;
 DUI_Text *procurement_history;
 DUI_Group *hold_group;
 DUI_Group *hold_shared_group;
 DUI_Field *hold_rfq_number;
 DUI_Field *hold_line_item;
 DUI_Field *hold_expiration;
 DUI_Selection *hold_reason;
 Callback *hold_callback;
 Callback *commit_hold_callback;
 DUI_Group *redirect_group;
 DUI_Group *redirect_shared_group;
 DUI_Field *redirect_rfq_number;
 DUI_Field *redirect_line_item;
 DUI_Toggle *print_new_abstract;
 DUI_Toggle *print_rfq_info;
 DUI_Selection *redirect_reason;
 Callback *redirect_callback;
 Callback *commit_redirect_callback;
 Callback *save_and_quit_callback;
 Callback *commit_quit_callback;
 Callback *cancel_quit_callback;
 Callback *cancel_callback;
 Callback *confirm_upload_callback;
 DUI_Command * print_rfq_cmd;
 DUI_Command * issue_rfq_cmd;
 DUI_Command * redirect_rfq_cmd;
 DUI_Command * hold_rfq_cmd;
 DUI_Command * amend_rfq_cmd;
 DUI_Command * cancel_rfq_cmd;
 DUI_Command * confirm_amend_rfq_cmd;
 DUI_Command * cancel_amend_rfq_cmd;
 DUI_Command * add_quote_cmd;
 DUI_Command * view_abstract_cmd;
 DUI_Command * quit_cmd;
 DUI_Command * category_cmds;
 DUI_Command * other_cmds;
 #ifndef NODB ReqForQuote *rfq;
 ReqForQuoteLineItem *rfq_li;
 Part *part;
 Part *mf_part;
 Document *doc;
 Acquisition *acq;
 Clause *clause;
 DocumentAddressee *doc_addr;

- 206- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 ShippingDocPackage *shipdoc;
 GSDefaults *gsd;
 ISADefaults *isad;
 List_of(STRING) shipdoc_keys;
 List_of(STRING) clause_keys;
 SolicitationLineItem *sol_li;
 #endif }

 DESCRIPTION

 This form is used to review an RFQ that has been selected from
the Workload_Form. It is also instantiated from other forms to
review the rfq they are dealing with or to redirect or hold the rfq
they are dealing with. There are two screens of information for an
RFQ. This class handles both. They are toggled using the "More
Info" command.

 It accesses the following tables:

 ReqForQuote(which see), ReqForQuoteLineItem(which see), Part(which see),
Document(which see), DocumentSent(which see), Acquisition(which see),
DocumentAddressee(which see), Clause(which see), ShippingDocPackage(which see),
GSDefaults(which see), ISADefaults(which see), Item(which see), MeasurementData(which
see), PriorityGroup(which see), RelatedPaperwork(which see), SolicitationHistory(which see),
Unit(which see), SolicitationLineItem(which see), Message(which see),
Vendor(which see), UserManagerDefaults(which see)

 There is only one instance of this form in an application at one
time.

 MEMBER FUNCTIONS

 Review_RFQ_Form * Review_RFQ_Form::instance_ = 0;
 Review_RFQ_Form * Review_RFQ_Form::instance(const char *rfq, const char *line, int
cat) Description:
 Public access to constructor, provided because there is only one instance. Calls set_values() to
set up the instance. returns: Review_RFQ_Form * , the instance.

 int cat)
 Review_RFQ_Form::set_values(const char *rfq, const char
*line, Description: Sets up instance for this "rfq". It switches
the to 1st rfq screen if it is not already there. returns: void

 Review_RFQ_Form::Review_RFQ_Form()
 Description: Constructor for Review RFQ form, public access
through instance() fxn. Instantiates all the DUI_Widgets used by
this form. returns: void

 Review_RFQ_Form::change_category()
 Description: Modifies category labels and commands. Also,

- 207- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

adds hold information if needed. returns: void

 Review_RFQ_Form::make_read_only()
 Description: Makes all values read_only (for Open and Closed
RFQs). returns: void

 Review_RFQ_Form::make_read_write()
 Description: Make values specified in FRD 3.2.2 read_write
(Unissued and Revised RFQs). returns: void

 Review_RFQ_Form::clear_data()
 Description: Clears value from fields on screen. returns: void

)
 load_item_desc(ReqForQuoteLineItem *rfq_li, DUI_Text
*item_desc Description: Loads the item description text (this will
change as the database changes). returns: void *rfq_line_item)
 Review_RFQ_Form::load_data(const char *rfq_num, const
char Description: Loads data from database. returns: void

 Review_RFQ_Form::change_info()
 Description: Changes what information is on the screen. Toggles
screens. returns: void

 Review_RFQ_Form::view_messages()
 Description: Displays messages related to this RFQ. Instantiates
the Message_Form(which see). returns:
 void

 Review_RFQ_Form::more_info()
 Description: Shows next screen of information for this RFQ.
returns: void

 Review_RFQ_Form::amend_rfq()
 Description: Amend RFQ - brings up the Review RFQ Form in
read_write mode with amend_cmds. returns: void

 Review_RFQ_Form::confirm_amend_rfq()
 Description: Issues an amended RFQ, returns to current category.
returns: void

 Review_RFQ_Form::cancel_amend_rfq()
 Description: Cancels amend, returns to current category. returns:
void

 Review_RFQ_Form::cancel_rfq()
 Description: Prompts the user to make sure they want to cancel
this RFQ. returns: void

 Review_RFQ_Form::confirm_cancel_rfq()

- 208- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Issues a canceled RFQ, returns to current category.
returns: void

 Review_RFQ_Form::issue_rfq()
 Description: Issues the RFQ. returns: void

 int Review_RFQ_Form::verify_addressees()
 Description: Verify that cage_codes exist in database. returns: int,
1 if success 0 if failure.

 Review_RFQ_Form::issue_840(const char *send_status)
 Description: Issues the RFQ (X12 840), issue as amended RFQ if
it is not from the Unissued categor. returns: 1 if successful, 0
otherwise.

)
 save_item_desc(ReqForQuoteLineItem *rfq_li, DUI_Text
*item_desc Description: Saves item description to database (will
change as database changes). returns: void

 Review_RFQ_Form::save_data()
 Description: Saves field values to database and commits database
if success. returns: void

 Review_RFQ_Form::save_data_no_commit()
 Description: Saves data to database but doesn't commit. returns:
int, 1 if save succeeded, 0 otherwise.

 Review_RFQ_Form::generate_840(STRING &retval)
 Description: Queries tables required by _840DBtoCDF()
 but have not been queried yet and calls _840DBtoCDF(). returns:
void

 Review_RFQ_Form::confirm_upload()
 Description: Pops current entry from the bcasitem queue, adds
new cdf. returns: void

 Review_RFQ_Form::save_and_redirect_rfq()
 Description: Pops up a dialog prompting for the reason for
redirect. returns: void

 Review_RFQ_Form::redirect_rfq()
 Description: Pops up the redirect dialog. returns:
 void

 Review_RFQ_Form::commit_redirect()
 Description: Actually redirect the RFQ. returns: void

 Review_RFQ_Form::save_and_hold_rfq()
 Description: Pops up a dialog prompting for the reason for hold

- 209- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

and hold expiration date by calling hold_rfq()
 after saving data. returns: void

 Review_RFQ_Form::hold_rfq()
 Description: Actually pops up the dialog. returns:
 void

 Review_RFQ_Form::commit_hold()
 Description: Put RFQ on hold. returns: void

 Review_RFQ_Form::add_quote()
 Description: Manually add a quote - LEAD BUYER ONLY
(though there is no check). returns: void

 Review_RFQ_Form::save_and_view_abstract()
 Description: view abstract of quotes for this RFQ NOTE:
 since this form never displays this button, the queries for finding
this rfq_information should probably be moved into
Quote_Abstract_Form However, this works for now, it's just not as
clean. returns: void

 Review_RFQ_Form::view_abstract()
 Description: Instantiates the Quote_Abstract_Form(which see).
returns: void

 Review_RFQ_Form::quit_review()
 Description: Checks for changes before quitting - if changes,
prompts the user for whether or not to save. returns: void

 Review_RFQ_Form::save_and_quit()
 Description: Saves changes and quits. returns: void

 Review_RFQ_Form::commit_quit()
 Description: Quit review -reloads Workload_Form(which see).
returns: void

 Review_RFQ_Form::cancel_quit()
 Description: Cancels quit. returns: void

 Review_RFQ_Form::~Review_RFQ_Form()
 Description: Destructor for Review_RFQ_Form, sets instance_ =
0. returns: void

 Review_RFQ_Form::print_rfq()
 Description: Sends the RFQ and Quote Abstract to the default
printer. returns: void

 FILES

 Review_RFQ.C Review_RFQ.H

- 210- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.9 Vendor_Performance_Data

NAME

 Vendor_Performance_Form - form for displaying information
about a vendor.

 SYNOPSIS

 #include "Vendor_Performance_Form.H"

 class Vendor_Performance_Form : public DUI_Form { public:
 static Vendor_Performance_Form *instance();
 ~Vendor_Performance_Form();
 void load_data();
 protected:
 Vendor_Performance_Form();
 private:
 static Vendor_Performance_Form *instance_;
 }
 DESCRIPTION

 This form is not implented yet.

 MEMBER FUNCTIONS

 FILES

 Vendor_Performance.C Vendor_Performance.H

- 211- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.2.4.10 Workload_Form

NAME

 Workload_Form - Form for displaying a list of rfqs by
category.

 SYNOPSIS

 #include "Workload_Form.H"

 class Workload_Form : public DUI_Form { public:
 static Workload_Form *instance();
 ~Workload_Form();
 void change_category();
 void view_messages();
 void view_unread_messages();
 void view_errors();
 void review_rfq();
 void find_rfq();
 void review_quotes();
 void select_next_rfq();
 void view_next_rfq();
 void quit_workload();
 void select(int cat, int n);
 int selection(STRING &rfq, STRING &line);
 protected:
 Workload_Form();
 private:
 static Workload_Form *instance_;
 int current_category;
 DUI_Group *unread_group_;
 void change_category(int category);
 void review_found_rfq();
 void review_found_award();
 void load_more_rfqs();
 DUI_Command *find_rfq_cmd;
 DUI_Command *review_rfq_cmd;
 DUI_Command *review_quotes_cmd;
 DUI_Command *other_cmds;
 DUI_Command *rfq_cmds;
 DUI_Label *category_label;
 DUI_Label *category_text;
 DUI_Selection *rfq_selection;
 DUI_Group *find_rfq_group;
 DUI_Field *rfq_number;
 DUI_Field *line_item;
 Callback *find_rfq_callback;
 DUI_Field *award_number;
 Callback *find_award_callback;

- 212- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 }
 DESCRIPTION

 This form is the first form in the GATEC application. It displays
the buyer's workload by listing the rfqs in each of the following
categories:
 Unissued, Unissued Held, Open, Closed, Closed Held, Overdue,
Awarded

 The buyer can switch between these categories by selecting
commands embedded in the form. It uses RFQ_Category(which
see) to keep track of the categories. It accesses the following
tables:
 Award(which see), Acquisition(which see), Document(which
see), ReqForQuote(which see), ReqForQuoteLineItem(which
see), LineItem(which see), Message(which see),
MessageReference(which see)
 There is only one instance of this form in an application at one
time.

 MEMBER FUNCTIONS

 Workload_Form *Workload_Form::instance_ = 0;
 Workload_Form * Workload_Form::instance() Description:
Public access to constructor, provided because there is only one
instance. returns: Workload_Form *, the instance.

 Workload_Form::~Workload_Form()
 Description: Destructor. Resets instance_. returns:
 void

 Workload_Form::Workload_Form()
 Description: Constructor for Workload_Form. Instantiates all the
DUI_Widgets used in this form. returns:
 void

 Workload_Form::change_category()
 Description: A change_category command was chosen. Calls
change_category(int). returns: void

 Workload_Form::change_category(int cat)
 Description: Change Workload_Form to display category "cat",
using RFQ_Category(which see). returns: void

 Workload_Form::review_rfq()
 Description: Review the selected RFQ or all if none are selected.
returns: void

 Workload_Form::review_quotes()
 Description: Goes directly to the Quote_Abstract_Form. returns:

- 213- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

void

 Workload_Form::find_rfq()
 Description: Pops up a dialog asking for RFQ number and line
item to find. returns: void

 Workload_Form::review_found_rfq()
 Description: Sends Review_RFQ_Form with found rfq.
returns: void

 Workload_Form::review_found_award()
 Description: Sends Quote_Abstract_Form with found award.
returns: void

 Workload_Form::view_messages()
 Description: View messages (related to selected RFQ). returns:
void

 Workload_Form::load_more_rfqs()
 Description: Loads more RFQs to screen. returns: void

 Workload_Form::view_unread_messages()
 Description: View unread messages (not related to any RFQ).
returns: void

 Workload_Form::view_errors()
 Description: View error messages. returns: void

 Workload_Form::selection(STRING &rfq, STRING &line)
 Description: Sets rfq and line argments to current selection.
returns: int, current category.

 Workload_Form::select(int cat, int n)
 Description: If current_category = cat, selects n'th RFQ. returns:
void

 Workload_Form::select_next_rfq()
 Description: Selects the next RFQ in the Workload list. returns:
void

 Workload_Form::view_next_rfq()
 Description: Displays the selected RFQ or Quotes depending
on category. returns: void

 Workload_Form::quit_workload()
 Description: Forces a quit of the application. returns: void

 FILES

 Workload.C Workload.H

- 214- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3 Lead Buyer Application

Lead_buyer.dui is an application that fulfills the user interface
requirements for the lead buyer functions of the GATEC project.
It allows the user to view statistics on the current status of the
GATEC database. It does this by providing a way to query the
GATEC system for procurement activties based on the following
criteria:

RFQ Number, Stock Number, Stock Class, SRAN, Review Status,
RFQ Date, BSP

 The user can then view statistics and award history information
on the list of activities that match the query crtieria. In
addition, the application allows the user to change the buyer
associated with the matching list. In this way the user can adjust
the workload assigned to each buyer.

 It uses DUI(1) for its user interface and interacts with a data base
through the NARQ(see NARQ) and NORA(see NORA)
libraries. It is written in C++. To get a user perspective on the
lead_buyer.dui application see Lead Buyer User's Guide
[REF000].

The following sections give a techical overview of the
lead_buyer.dui application.

2.3.1 Class Hierarchy

 The lead_buyer.dui application has the following class
hierarchy, indentation denotes derivation:

(DUI_Form) defined in DUI(1)
 Change_RFQs_Form
 List_RFQs_Form
 Price_History_Form
 Price_Performance_Form
 Select_RFQs_Form
 Statistics_Form
Summarized_RFQ
RFQ_Summary
Range_List
Sort_Order
String

- 215- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 The derivatives of DUI_Form are all interface classes
describing the forms used in the application. RFQ_Summary(3) is
the class that deals with the database. It does all the querying and
generates a list of Summarized_RFQ(3)'s which simply hold the
information for any one one procurement activity.
Range_List(3) is a class for parsing strings containing lists of
values or ranges of values(the user is allowed to enter ranges
when specifying the values for the selection criteria).
Sort_Order(3) is a class for holding the order in which the
Summarized_RFQ's are to sorted. String is a generic string class.

 See the individual documentation on these classes for more
details.

2.3.2 Programming Hints

The documentation for the individual form classes should be
consulted for the specific function of the lead_buyer.dui
application that they fulfill. Also the DUI and NARQ and NORA
man pages should be consulted because this will clarify a lot of
the code found in the form classes and RFQ_Summary(3).

 RFQ_Summary is the class responsible for all the database
querying functionality and for generating a list of matching
procurement activities. This is the class to look in if there are
problems with the records being queried. This class is passed
around to the other forms for them to display or operate on.

 Look in Summarized_RFQ(3) for the actual data that is
retrieved from the data base for each matching record.

 The String class is identical to the DUI(1) string class but minus
the communicable object stuff.

2.3.3 Lead Buyer Source Tree

The source for lead_buyer.dui is kept under the DUI(1)
 source tree in:

 $CVSROOT/dui/applications/lead_buyer

 It depends on the NARQ and NORA libraries being in:
 $CVSROOT/narqdb/lib

- 216- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 These must be made before the lead_buyer.dui application can be
made. To make the lead_buyer.dui application, cd to its source
directory and type:

 xmkmf; make depend all
 The resulting "lead_buyer.dui" file will be installed in:
 $CVSROOT/dui/bin

2.3.4 Lead Buyer Form Classes

The lead_buyer,dui forms are comprised of the following classes:

Change_RFQs_Form
List_RFQs_Form
Price_History_Form
Price_Performance_Form
RFQ_Summary
Range_List
Select_RFQs_Form
Sort_Order
Statistics_Form
String
Summarized_RFQ

- 217- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.1 Change_RFQs_Form

NAME

 Change_RFQs_Form - Defines the Screen that allows the user to
change BSP or Category.

 SYNOPSIS

 #include "Change_RFQs_Form.H"

 class Change_RFQs_Form: public DUI_Form { protected:
 Change_RFQs_Form();
 ~Change_RFQs_Form();
 public:
 static Change_RFQs_Form *instance(RFQ_Summary *);
 void save_changes();
 void save_commit();
 void save_quit();
 Callback *save_commit_callback;
 Callback *save_quit_callback;
 private:
 DUI_Selection *bsp;
 DUI_Selection *review_status;
 DUI_Field *rfq_count;
 DUI_Label *op_to_cl;
 DUI_Label *cl_to_op;
 DUI_Label *ch_to_op;
 static Change_RFQs_Form *instance_;
 RFQ_Summary *rfq_summary;
 void setup(RFQ_Summary *);
 }
 DESCRIPTION

 T h i s C l a s s i s i n s t a n t i a t e d b y
L i s t _ R F Q s _ F o r m : : c h a n g e _ s e l e c t e d _ r f q s () (s e e
List_RFQs_Form(l)). It defines a form with two DUI_Seletion's
(see DUI_Selection(d)) from wich the user can select the buyer
and/or category that he wishes to apply to the rfqs selected in the
RFQ_Summary (see RFQ_Summary(l)) passed in to the
constructor. It actually performs the change by calling
RFQ_Summary::change_selected_rfqs().

 MEMBER FUNCTIONS

 Change_RFQs_Form::instance(RFQ_Summary *rfq_summary)
 Description: This function provides the only public access to
the constructor. We want only one instance of this form active at
one time. returns: a pointer to an instance of the form.

- 218- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Change_RFQs_Form::Change_RFQs_Form()
 Description: The private constructor called by instance(). returns:
void

 Change_RFQs_Form::~Change_RFQs_Form()
 Description: This destructor currently does nothing. returns:
void

 Change_RFQs_Form::save_changes()
 Description: Informs the user of what is about to be changed,
and asks for confirmation. returns: void

 Change_RFQs_Form::save_commit()
 Description: Actually commits the changes calling
RFQ_Summary::change_selected_rfqs() (See RFQ_Summary(l)).
returns: void

 Change_RFQs_Form::save_quit()
 Description: This is called if the user presses quit on the save
confirmation dialog. It does nothing. returns: void

 Change_RFQs_Form::setup(RFQ_Summary *rfq_sum)
 Description: This routine sets up information according to the
RFQ_Summary passed as an argument. The options the user has on
the category selection are limited depending on the contents of
the RFQ_Summary as follows: Closed -> Open (if there are any
closed) Closed Held -> Open (if there are any closed held)
Open -> Closed (if there are any open) This function is called by
instance(). returns: void

 FILES

 Change_RFQs.C Change_RFQs.H

- 219- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.2 List_RFQs_Form

NAME

 List_RFQs_Form - This form displays the list of RFQs in an
RFQ_Summary.

 SYNOPSIS

 #include "List_RFQs_Form.H"

 class List_RFQs_Form: public DUI_Form { protected:
 List_RFQs_Form();
 ~List_RFQs_Form();
 public:
 static List_RFQs_Form *instance(RFQ_Summary *);
 void change_selected_rfqs();
 void view_statistics();
 void view_price_performance();
 void print_rfqs();
 void show_rfqs();
 private:
 DUI_Label *rfq_list_title;
 DUI_Multi_Selection *rfq_list;
 DUI_Field *rfqs_shown;
 DUI_Field *rfqs_in_list;
 static List_RFQs_Form *instance_;
 RFQ_Summary *rfq_summary;
 void setup(RFQ_Summary *);
 void setup_list(int just_add_more = 0);
 int propagate_selections();
 }
 DESCRIPTION

 An RFQ_Summary (see RFQ_Summary(l)) is passed in to
instance(), the contents of that summary are displayed in a
DUI_Seletion (see DUI_Selection(d)) then the following
operations are allowed on RFQs selected from that list:
 Change RFQs - see Change_Form(l). View Statistics - see
Statistics_Form(l) Price Performance - see
Price_Performance_Form(l) Print - see print_rfqs() function.

 MEMBER FUNCTIONS

 List_RFQs_Form::instance(RFQ_Summary *rfq_sum)
 Description: This function provides the only public access to
the constructor. We want only one instance of this form active at
one time. returns: a pointer to an instance of the form.

 List_RFQs_Form::List_RFQs_Form()

- 220- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: The private constructor called by instance(). returns:
void

 List_RFQs_Form::~List_RFQs_Form()
 Description: This destructor currently does nothing. returns:
void

 List_RFQs_Form::show_rfqs()
 Description: This function is called when the user edits the
"RFQs Shown" field on the List RFQs screen. If the number
requested is greater than what is shown then the function just
adds more from the list already queried. If it is less then it clears
the list and lists just the ones asked for. (see setup_list())
 returns: void

 List_RFQs_Form::change_selected_rfqs()
 Description: Displays Change_RFQs_Form after synchronizing
the RFQ_Summary with the users selections (see
propagate_selections()). returns: void

 List_RFQs_Form::view_statistics()
 Description: Displays Statistics_Form after synchronizing the
RFQ_Summary with the users selections (see
propagate_selections()). returns: void

 List_RFQs_Form::view_price_performance()
 Description: Displays Statistics_Form after synchronizing the
RFQ_Summary with the users selections (see
propagate_selections()). returns: void

 List_RFQs_Form::print_rfqs()
 Description: Prints the current list of rfqs in the RFQ_Summary.
(see RFQ_Summary::display_data()). returns: void

 List_RFQs_Form::setup(RFQ_Summary *rfq_sum)
 Description: This function is called by instance() it attaches the
passed RFQ_Summary and calls setup_list() (which see). returns:
void

 List_RFQs_Form::setup_list(int just_add_more)
 Description: This function sets up the Mulit_Selection list and
title based upon the number of rfqs requested and sort_order
implying what is to be displayed. If just_add_more is non-zero
it just appends to the list until the number requested is satisfied else
it clears the list and loads the number requested. returns: void

 int List_RFQs_Form::propagate_selections()
 Description: This function propagates the selections the user
has made to the internal RFQ_Summary. It assumes that if the
user has selected all the rfqs shown (which might not be the

- 221- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

actual number queried from the database) that he actually wanted
to selected all the rfqs queried. returns: 1 if there were any
selected by the user 0 otherwise.

 FILES

 List_RFQs.C List_RFQs.H

- 222- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.3 Price_History_Form

NAME

 Price_History_Form - Form to display the award-price history of
a stock number.

 SYNOPSIS

 #include "Price_History_Form.H"

 class Price_History_Form: public DUI_Form { protected:
 Price_History_Form();
 ~Price_History_Form();
 public:
 static Price_History_Form *instance(RFQ_Summary * , char *, double, double,
double, double);
 void print();
 private:
 DUI_Field *stock_number;
 DUI_Table *price_table;
 DUI_Field *start_price;
 DUI_Field *end_price;
 DUI_Field *min_price;
 DUI_Field *max_price;
 static Price_History_Form *instance_;
 RFQ_Summary *rfq_summary;
 void setup(RFQ_Summary * ,char *, double, double, double, double);
 }

 DESCRIPTION

 This form is instantiated by the Price_Performance_Form
(which see). It displays a list of all prices at wich this stock
number was awarded as well as starting price, ending price,
minimum price and maximum price.

 MEMBER FUNCTIONS

 number, Price_History_Form::instance(RFQ_Summary
*rfq_sum, char *stock double startprice, double endprice, double
minprice, double maxprice) Description: This function provides
the only public access to the constructor. We want only one
instance of this form active at one time. returns: a pointer to an
instance of the form.

 Price_History_Form::Price_History_Form()
 Description: The private constructor called by instance(). returns:
void

 Price_History_Form::~Price_History_Form()

- 223- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: This destructor currently does nothing. returns:
void

 Price_History_Form::print()
 Description: This function prints the current price history
information using the environment variable
"GATEC_PRINT_STRING". returns: void

 number, Price_History_Form::setup(RFQ_Summary *rfq_sum,
char *stock double startprice, double endprice, double
minprice, double maxprice)
 Description: This function is called by instance() and it finds the
award entries in the RFQ_Summary that was passed into the
constructor and displays them in the history table. It also initializes
the other fields. returns: void

 FILES

 Price_History.C Price_History.H

- 224- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.4 Price_Performance_Form

NAME

 Price_Performance_Form - Form to display the awared price
changes by stock number.

 SYNOPSIS

 #include "Price_Performance_Form.H"

 class Price_Performance_Form: public DUI_Form { protected:
 Price_Performance_Form();
 ~Price_Performance_Form();
 public:
 static Price_Performance_Form *instance(RFQ_Summary *);
 void print();
 void view_price_history();
 private:
 DUI_Selection *stock_numbers;
 static Price_Performance_Form *instance_;
 RFQ_Summary *rfq_summary;
 void setup(RFQ_Summary *);
 long *number_of_buys;
 long *start_date;
 long *end_date;
 double *max_price;
 double *min_price;
 double *start_price;
 double *end_price;
 List_of(STRING) stcknbrs;
 }
 DESCRIPTION

 This Form displays the number of buys, starting date, endind date,
maximum price, minumun price, starting price, and ending price
for each awarded stock number represented in the RFQ_Summary
passed to it. It also allows a more specific history of a stock
number to be viewed by instantiating a Price_History_Form.

 MEMBER FUNCTIONS

 Price_Performance_Form::instance(RFQ_Summary *rfq_sum)
 Description: This function provides the only public access to
the constructor. We want only one instance of this form active at
one time. returns: a pointer to an instance of the form.

 Price_Performance_Form::Price_Performance_Form()
 Description: The private constructor called by instance(). returns:
void

- 225- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Price_Performance_Form::~Price_Performance_Form()
 Description: This destructor currently does nothing. returns:
void

 Price_Performance_Form::print()
 Description: This function prints the current performance table.
returns: void

 Price_Performance_Form::view_price_history()
 Description: This function instantiates the Price_History_Form
for the selected stock number. returns: void

 Price_Performance_Form::setup(RFQ_Summary *rfq_sum)
 Description: This function does the actual calculations for each
awarded stock number and populates the DUI_Table (see
DUI_Table(d)) used to display it. returns: void

 FILES

 Price_Performance.C Price_Performance.H

- 226- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.5 RFQ_Summary

NAME

 RFQ_Summary - Class for querying and accessing a summary of
GATEC RFQs.

 SYNOPSIS

 #include "RFQ_Summary.H"

 class RFQ_Summary { private:
 Sort_Order *sort_order_;
 Summarized_RFQ **items_;
 Summarized_RFQ **selected_items_;
 Selection_Criteria *criteria_;
 int error_state_;
 String* last_error_;
 long count_;
 long selection_count_;
 long item_size_;
 long select_size_;
 List_ofPtrs(String) buyers;
 Connection * archive_;
 Connection * active_;
 static Sort_Order *current_order_;
 void add_selected(Summarized_RFQ * new_entry);
 void add_entry(Summarized_RFQ *new_entry, int arch);
 int find_entry(Summarized_RFQ *entry);
 void clear_entries();
 void clear_selections();
 int check_status(int type);
 public:
 RFQ_Summary();
 ~RFQ_Summary();
 Summarized_RFQ *rfq(int i);
 Summarized_RFQ *selected_rfq(int i);
 int build_list() { return build_list(active_); };
 int build_list(Connection *con, int just_count = 0);
 void sort_list();
 void sort_selected();
 void select_rfq(int i);
 int change_selected_rfqs(const char *buyer = 0, const char *category = 0);
 int count() { return count_; };
 int query_count() { return build_list(active_, 1); };
 Lead Buyer(3) Last change: Tue Jan 4 16:19:33 1994 1

 RFQ_Summary(3) Gatec Manual RFQ_Summary(3)
 int any_are_archived();
 int selection_count() { return selection_count_; };

- 227- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void set_selection_criteria(Selection_Criteria *new_criteria)
 { criteria_ = new_criteria; };
 void set_sort_order(Sort_Order *new_order) { *sort_order_ = *new_order; };
 Sort_Order *get_sort_order() { return sort_order_; };
 int error() { return error_state_; };
 char * error_msg() { return *last_error_; };
 void select_all();
 void deselect_all() { clear_selections(); };
 void display_data(ostream& strm);
 List_ofPtrs(String)* get_buyers() { return &buyers; };
 enum {ALL_CLOSED = 1, SOME_CLOSED, NO_CLOSED, ALL_OPEN, SOME_OPEN,
NO_OPEN, ALL_HELD, SOME_HELD, NO_HELD, ALL_AWARDED,
SOME_AWARDED, NO_AWARDED};
 int check_held() { return check_status(ALL_HELD); };
 int check_closed() { return check_status(ALL_CLOSED); };
 int check_open() { return check_status(ALL_OPEN); };
 int check_awarded() { return check_status(ALL_AWARDED);
 };
 public:
 friend sort_summarized_rfqs(const void *t1, const void *t2);
 }

 DESCRIPTION

 This class allows the user to query the GATEC database for a list
of rfqs based on the following criteria:
 RFQ_Number, Stock_Number, Stock_Class, SRAN,
Review_Status, RFQ_Date, BSP

 It keeps a list of Summarized_RFQ's (see Summarized_RFQ)
 populated from the database and allows the user to perform
certain functions on the list.

 MEMBER FUNCTIONS

 RFQ_Summary::RFQ_Summary()
 Description: This is the only constructor defined, it initializes all
member variables, establishes a default sort order, connects to the
database and queries the Buyer table for a list of the current
buyers. returns:
 void

 RFQ_Summary::~RFQ_Summary()
 Description: Deletes storage and diconnects from database.
returns: void

 Summarized_RFQ *RFQ_Summary::rfq(int i)
 Description: Base List access function. returns:
 Sumarized_RFQ * indexed by i, if i is invalid it returns
NULL.

- 228- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Summarized_RFQ *RFQ_Summary::selected_rfq(int i)
 Description: Selected List accessor function. The selected list
is a list of pointers to objects in the base list that have been
selected. returns:
 Sumarized_RFQ * indexed by i, if i is invalid it returns
NULL.

 int RFQ_Summary::build_list(Connection *con, int just_count)
 Description: This is the function that does the query and builds
the list. It parses a its selection criteria using Range_List, builds a
ComplexQuery (see NARQ and NORA references) and calls
add_entry for each row returned. The argument con tells it which
database connection to use (archive_ or active_), and argument
just_count tells it not to build a list but just to return the count.
It is called by build_list(void). returns: number of records
retrieved.

 void RFQ_Summary::sort_list()
 Description: This function sorts the unselected list of items
according to the sort_order set by the user. It calls qsort() on the
items_ list after setting the static variable current_order_ which
is used by sort_summarized_rfqs(). returns: void

 void RFQ_Summary::sort_selected()
 Description: This function sorts the selected_items_ list. returns:
void

 void RFQ_Summary::select_rfq(int i)
 Description: Adds Summarized_RFQ * indexed by i from base
list to selected list. returns: void

 char *category)
 int RFQ_Summary::change_selected_rfqs(const char *buyer,
const Description: Changes the database records associated with
the list of selected RFQs to have the new buyer and or review
status specified. It skips all the records that are from the archive
database. returns: 0 always.

 void RFQ_Summary::add_selected(Summarized_RFQ *
new_entry)
 Description: Add an entry to selected RFQ's. returns:
 void

 void RFQ_Summary::add_entry(Summarized_RFQ *new_entry,
int arch)
 Description: add a brand new entry to list base list of
Summarized_RFQs, resizing if necessary. returns: void

 int RFQ_Summary::find_entry(Summarized_RFQ *entry)
 Description: Find an entry in base list equal to the argument

- 229- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

entry. returns: index of given argument or -1.

 void RFQ_Summary::clear_entries()
 Description: Remove all entries in the base list. returns: void

 void RFQ_Summary::clear_selections()
 Description: Remove all entries in selected rfq list. returns: void

 int RFQ_Summary::any_are_archived()
 Description: Check to see if there are any archived entries in
the selected list. returns: returns number of archive entries.

 int sort_summarized_rfqs(const void *t1, const void *t2)
 Description: Sort function used in call to qsort in sort_selected
and sort_list. It uses the sort_order in current_order_ to determine
order. returns: -1 if t1 is greater than t2, 1 if t1 is less than t2, 0
otherwise.

 void RFQ_Summary::select_all()
 Description: Select all the in the base list rfqs. returns: void

 void RFQ_Summary::display_data(ostream& strm)
 Description: Print a summary of the criteria and the list that it
generated onto the passed stream. returns: void

 int RFQ_Summary::check_status(int type)
 Description: Check to see if some, none or all of the selected rfqs
are in the passed category. returns: one of the following:
ALL_CLOSED SOME_CLOSED, NO_CLOSED, ALL_OPEN,
SOME_OPEN, NO_OPEN, ALL_HELD, SOME_HELD,
NO_HELD, ALL_AWARDED, SOME_AWARDED,
NO_AWARDED

 FILES

 RFQ_Summary.C RFQ_Summary.H

- 230- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.6 Range_List

NAME

 Range_List - a Class that handles parsing of a list of ranges in
string form.

 SYNOPSIS

 #include "Range_List.H"

 class Range { private:
 String * min_;
 String * max_;
 public:
 Range(String& min, String& max) : min_(0), max_(0)
 { min_ = new String(min); max_ = new String(max); };
 ~Range() { delete max_; delete min_; };
 int single_value() { return (*min_ == *max_); };
 String& min() { return *min_; };
 String& max() { return *max_; };
 };
 List_of_Ptrsdeclare(Range)
 class Range_List { private:
 List_ofPtrs(Range) ranges_;
 int hyphen_check;
 public:
 Range_List(char *range_values, int hyphens = 1);
 ~Range_List() { ranges_.remove_all(); };
 int count() { return ranges_.size(); };
 Range * range(int i) { return ranges_[i]; };
 }
 DESCRIPTION

 The Range_List Class provides functionality for dealing with
Ranges expressed as strings of the form:

 [<value>[- <value>]], [<value>[- <value>]],

 Single values are stored as ranges with min = max. This is
inefficient but convenient and sufficient for small lists. The
definition of Range is included with the definition of Range_List.

 MEMBER FUNCTIONS

 Range_List::Range_List(char *range_values, int hyphen)
 Description: The constructor parses the string passed to it
(checking for "-" ranges if hyphen is no-zero) and generates the
list of ranges. returns: void

- 231- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 FILES

 Range_List.C Range_List.H

- 232- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.7 Select_RFQs_Form

NAME

 Select_RFQs_Form - Form querying the user for RFQ selection
criteria.

 SYNOPSIS

 #include "Select_RFQs_Form.H"

 class Select_RFQs_Form: public DUI_Form { public:
 Select_RFQs_Form();
 ~Select_RFQs_Form();
 void change_selection_order();
 void select_rfqs();
 void commit_select();
 void cancel_select();
 void quit();
 Callback *select_commit_callback;
 Callback *select_cancel_callback;
 private:
 List_of(DUI_Toggle) select_toggles;
 DUI_Field *selection_order;
 DUI_Field *rfq;
 DUI_Field *stock_class;
 DUI_Text *stock_number;
 DUI_Field *sran;
 DUI_Field *start_date;
 DUI_Field * end_date;
 DUI_Group *criteria_group;
 DUI_Multi_Selection *buyer;
 DUI_Multi_Selection *review_status;
 List_of(DUI_Toggle) selected_toggles;
 Selection_Criteria *user_criteria;
 RFQ_Summary *rfq_summary;
 Sort_Order *user_order;
 enum Sort_Order::SortOption *order_type;
 void setup();
 }
 DESCRIPTION

 This form provides a way for the user to enter criteria by which
to build a list of rfqs to view statistics on or change. This is the
first screen in the Lead Buyer application. The criteria are:

 RFQ Number, Stock Class, Stock Number, Bill to SRAN, Date,
Buyer, Review Status.

 All criteria except date, and stock number can be entered as a list

- 233- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

in the form handled by Range_List (which see).

 This form instantiates the List_RFQs_Form (which see).

 MEMBER FUNCTIONS

 Select_RFQs_Form::Select_RFQs_Form()
 Description: Constructor for Select_RFQs_Form. returns: void

 Select_RFQs_Form::~Select_RFQs_Form()
 Description: This destructor currently does nothing. returns:
void

 Select_RFQs_Form::change_selection_order()
 Description: The criteria also has a sort order associated with it.
This is represented by a set of DUI_Toggles. By selecting and
deselecting the toggles the user can change the sort order. This
function is called whenever a user selects or deselects a toggle.
returns: void

 Select_RFQs_Form::select_rfqs()
 Description: This creates an RFQ_Summary object with the
given criteria and displays a List_RFQs_Form(which see) for that
RFQ_Summary. If the count returned by the RFQ_Summary is >
5000 it asks the user if he wishes to continue. returns: void

 Select_RFQs_Form::commit_select()
 Description: This function is called if the number of records that
would be queried is over 5000 and the user decided to go ahead
and generate the list. (See select_rfqs()) returns: void

 Select_RFQs_Form::cancel_select()
 Description: This function is called if the number of records that
would be queried is over 5000 and the user decided to quit. It does
nothing. returns: void

 Select_RFQs_Form(3) Gatec Manual
Select_RFQs_Form(3)
 Select_RFQs_Form::quit()
 Description: This function quits the lead buyer application
altogether. returns: void

 Select_RFQs_Form::setup()
 Description: This function queries the buyer table for the list of
buyers using RFQ_Summary::get_buyers() and updates the
DUI_Selection that lists them to the user. returns: void

 FILES

 Select_RFQs.C Select_RFQs.H

- 234- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.8 Statistics_Form

NAME

 Statistics_Form - Form to display RFQ statistics for an
RFQ_Summary.

 SYNOPSIS

 #include "Statistics_Form.H"

 class Statistics_Form: public DUI_Form { protected:
 Statistics_Form();
 ~Statistics_Form();
 public:
 static Statistics_Form *instance(RFQ_Summary *);
 void print();
 private:
 DUI_Table *table;
 static Statistics_Form *instance_;
 RFQ_Summary *rfq_summary;
 void setup(RFQ_Summary *);
 }
 DESCRIPTION

 This form displays statistics about the selected RFQs in an
RFQ_Summary (which see). The statistics it displays are based
on status and are:
 Count in status, Dollar Amount in status, count percentage of
total amount percentage of total.

 MEMBER FUNCTIONS

 Statistics_Form::instance(RFQ_Summary *rfq_sum)
 Description: This function provides the only public access to
the constructor. We want only one instance of this form active at
one time. returns: a pointer to an instance of the form.

 Statistics_Form::Statistics_Form()
 Description: The private constructor called by instance(). returns:
void

 Statistics_Form::~Statistics_Form()
 Description: This destructor currently does nothing. returns:
void

 Statistics_Form::print()
 Description: Prints current statistics. returns: void

- 235- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Statistics_Form::setup(RFQ_Summary *rfq_sum)
 Description: This funtion does that actual calculation of statistics.
returns: void

 FILES

 Statistics.C Statistics.H

- 236- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.9 Sort_Order

NAME

 Sort_Order - Class for storing sorting orders to be applied to
Summarized_RFQ's.

 SYNOPSIS

 #include "Sort_Order.H"

 class Sort_Order {

 public:
 enum SortOption { RFQ_Number = 1, BSP, Stock_Number, Stock_Class, SRAN,
Review_Status, RFQ_Date, RFQ_Quantity, RFQ_Price, Award_Quantity, Award_Price, Clear };
 private:
 enum SortOption *sort_order;
 int next_;
 int find_opt(enum SortOption opt);
 public:
 Sort_Order();
 ~Sort_Order();
 Sort_Order(Sort_Order& new_order);
 Sort_Order& operator = (Sort_Order& new_order);
 Sort_Order& operator += (enum SortOption opt);
 Sort_Order& operator -= (enum SortOption opt);
 enum SortOption order(int which);
 }

 DESCRIPTION

 This class is a utility class for storing and changing the order in
which to sort the data that is stored in a Summarized_RFQ
(which see). It provides operators to easily modify the order.

 MEMBER FUNCTIONS

 Sort_Order::Sort_Order()
Description: initializes the sorting order to Clear(no order).
returns: void

 Sort_Order::Sort_Order(Sort_Order& new_order)
 Description: Creates a Sort_Order with the same elements as
passed arg. returns: void

 Sort_Order::~Sort_Order()
 Description: Deletes storage used by class. Namely the sort_order
array. returns: void

 Sort_Order& Sort_Order::operator = (Sort_Order& new_order)

- 237- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Assignment operator. returns: this Sort_Order&.

 Sort_Order& Sort_Order::operator += (enum SortOption opt)
 Description: if "opt" == Clear it clears the current option array
else it adds "opt" to the end of the current option array. returns:
this Sort_Order&.

 Sort_Order& Sort_Order::operator -= (enum SortOption opt)
 Description: if "opt" != Clear then it finds that option in the
option array and removes it if it is there. returns: this
Sort_Order&.

 enum Sort_Order::SortOption Sort_Order::order(int which)
 Description: Finds order at index i. returns:
 Sort_Option indexed by i.

 int Sort_Order::find_opt(enum SortOption opt)
 Description: Searches for opt in current array. returns: index of
opt if there else Clear;
 FILES

 Sort_Order.C Sort_Order.H

- 238- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.10 String

NAME

 String - A generic string class.

 SYNOPSIS

 #include "String.H"

 class String {

 protected:
 char *value_;
 int length_;
 int size_;
 static String *buf_;
 String();
 private:
 void resize(int size);
 void set(const char *value, int len);
 public:
 static String &buf();
 String(int size);
 String(String &);
 String(const char *str);
 String(const char *str, int length);
 virtual ~String();
 char *value() { return value_; };
 operator char *() { return value_; };
 int length() { return length_; };
 String &operator = (String & str);
 String &operator +=(String & str);
 String &operator = (const char *str);
 String &operator +=(const char *str);
 String &operator +=(char);
 boolean operator ==(String & str) { return (strcmp(value_, str.value_) == 0); };
 boolean operator !=(String & str) { return (strcmp(value_, str.value_) != 0); };
 boolean operator > (String & str) { return (strcmp(value_, str.value_) > 0); };
 boolean operator >=(String & str) { return (strcmp(value_, str.value_) >= 0); };
 boolean operator < (String & str) { return (strcmp(value_, str.value_) < 0); };
 boolean operator <=(String & str) { return (strcmp(value_, str.value_) <= 0); };
 boolean operator ==(const char *str) { return (strcmp(value_, str ? str : "") == 0); };
 boolean operator !=(const char *str) { return (strcmp(value_, str ? str : "") != 0); };
 char operator[](int index);
 boolean convert(int &);
 boolean convert(long &);
 boolean convert(float &);
 boolean convert(double &);
 void unjustify();

- 239- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void center_justify(int length);
 void right_justify(int length);
 void left_justify(int length);
 public:
 virtual const char *class_name() const { return "String";
 }
 }

 DESCRIPTION

 This class is a version of the DUI STRING class (which see)
stripped of all the Communication_Object functionality.

 MEMBER FUNCTIONS

 String::String(int size)
 Description: public constructors for String class String(int size
) - empty, null-terminated String of length size String(String &
str) - copy String String(char *c) - copy NULL-
terminated array of char String(char *c, int s) - copy non
NULL- terminated array of char returns: void

 String::~String()
 Description: destructor for String returns: void

 String::set(const char *value, int size)
 Description: sets value_ to value and length_ to length (growing
String if neeeded) and NULL-terminates value_ returns: void

 String::resize(int size)
 Description: resize value_ if needed. returns: void

 String& String::operator += (String & str)
 Description: Concatenate str to end of String. returns: this String
&.

 String& String::operator += (const char * chars)
 Description: Concatenates char * chars to end of string.
returns: this String&.

 String& String::operator += (char c)
 Description: Concatenates char c to end of string.

 Lead Buyer(3) Last change: Tue Jan 4 16:19:25 1994 2
String& String::operator = (String & str)
 Description: assignment operator for String (from String).
returns: this String &.

 String& String::operator = (const char * str)
 Description: assignment operator for String (from char *) returns:
this String &.

- 240- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 String::operator[](int index)
 Description: operator [n] returns the nth char in String returns:
nth char.

 String::convert(int &num)
 Description: Converts string to int. returns: 1 if successful, 0
otherwise

 String::convert(long &num)
 Description: Converts string to long. returns: 1 if successful, 0
otherwise

 String::convert(float &num)
 Description: Converts string to float. returns: 1 if successful, 0
otherwise

 String::convert(double &num)
 Description: Converts string to double. returns: 1 if successful, 0
otherwise

 String::unjustify()
 Description: strips leading and trailing spaces. returns: void

 String::left_justify(int len)
 Description: removes trailing spaces, pads with leading spaces.
returns: void

 String::center_justify(int len)
 Description: makes number trailing spaces = number leading
spaces. returns: void

 String(3) Gatec Manual String(3)
 String::right_justify(int len)
 Description: removes leading spaces, pads with trailing spaces.
returns: void

 String::buf()
 Description: This function allows access to static buf_. returns:
String & buf_.

 FILES

 String.C String.H

- 241- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.3.4.11 Summarized_RFQ

NAME

 Summarized_RFQ - Class to hold data required on each RFQ in
an RFQ_Summary.

 SYNOPSIS

 #include "Summarized_RFQ.H"

 class Summarized_RFQ{ private:
 String * RFQ_Number_;
 String * Line_Item_;
 String * BSP_;
 String * Stock_Number_;
 String * Stock_Class_;
 String * SRAN_;
 String * Review_Status_;
 String * RFQ_Date_;
 String * Award_Date_;
 String * UTN_Number_;
 String * Document_Id_;
 String * Redirect_Reason_;
 int archived_;
 long RFQ_JDate_;
 long Award_JDate_;
 double Award_Price_;
 double RFQ_Price_;
 double Award_Quantity_;
 double RFQ_Quantity_;
 public:
 Summarized_RFQ(const char * new_RFQ_Number_ = "", const char * new_Line_Item_ = "",
const char * new_BSP_ = "", const char * new_Stock_Number_ = "", const char *
new_Stock_Class_ = "", const char * new_SRAN_ = "", const char * new_Review_Status_ =
"", const char * new_RFQ_Date_ = "", const char * new_UTN_Number_ = "", const char *
new_Document_Id_ = "", const char * new_Redirect_Reason_ = "", const char *
new_Award_Date_ = "", double new_Award_Price_ = 0.0, double new_RFQ_Price_ =
0.0, double new_Award_Quantity_ = 0.0, double new_RFQ_Quantity_ = 0.0, long
new_RFQ_JDate_ = 0, long new_Award_JDate = 0);
 ~Summarized_RFQ();
 int archived() { return archived_; };
 void archived(int i) { archived_ = i; };
 void RFQ_Number(String& new_value);
 String& RFQ_Number();
 void Line_Item(String& new_value);
 String& Line_Item();
 void BSP(String& new_value);
 String& BSP();
 void Stock_Number(String& new_value);

- 242- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 String& Stock_Number();
 void Stock_Class(String& new_value);
 String& Stock_Class();
 void SRAN(String& new_value);
 String& SRAN();
 void Review_Status(String& new_value);
 String& Review_Status();
 void RFQ_Date(String& new_value);
 String& RFQ_Date();
 void RFQ_Number(const char * new_value);
 void Line_Item(const char * new_value);
 void BSP(const char * new_value);
 void Stock_Number(const char * new_value);
 void Stock_Class(const char * new_value);
 void SRAN(const char * new_value);
 void Review_Status(const char * new_value);
 void RFQ_Date(const char * new_value);
 void Award_Date(const char * new_value);
 void RFQ_JDate(long new_value);
 void Award_JDate(long new_value);
 char * UTN_Number() { return *UTN_Number_; };
 char * Document_Id() { return *Document_Id_; };
 char * Redirect_Reason() { return *Redirect_Reason_; };
 String& Award_Date() { return *Award_Date_; };
 long RFQ_JDate();
 long Award_JDate();
 void Award_Price(double new_value);
 double Award_Price();
 void RFQ_Price(double new_value);
 double RFQ_Price();
 void Award_Quantity(double new_value);
 double Award_Quantity();
 void RFQ_Quantity(double new_value);
 double RFQ_Quantity();
 virtual Summarized_RFQ& operator = (Summarized_RFQ& new_value);
 virtual int operator == (Summarized_RFQ& new_value);
 };
 class Selection_Criteria: public Summarized_RFQ { public:
 Selection_Criteria(const char * RFQ_Range = "", const char *BSP_Range = "", const
char * Stock_Number_Range = "", const char * Stock_Class_Range = "", const char *
SRAN_Range = "", const char * Status_Range = "", const char * Date_Range = "") :
 Summarized_RFQ(RFQ_Range, "", BSP_Range, Stock_Number_Range,
Stock_Class_Range, SRAN_Range, Status_Range, Date_Range) {};
 char * RFQ_Range() { return RFQ_Number(); };
 char * BSP_Range() { return BSP(); };
 char * Stock_Number_Range() { return Stock_Number(); };
 char * Stock_Class_Range() { return Stock_Class(); };
 char * SRAN_Range() { return SRAN(); };
 char * Status_Range() { return Review_Status(); };
 char * Date_Range() { return RFQ_Date(); };

- 243- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 }
 DESCRIPTION

 This is basically a structure with accessor functions that holds
the data needed by the RFQ_Summary class. Which is as follows:
 RFQ Number, Line item, BSP, Stock Number, Stock Class,
SRAN, Review Status, RFQ Date, UTN Number, Documentid,
Redirect Reason, Award Date, Award price, RFQ price, Award
quantity, RFQ Quantity, RFQ Date, Award date.

 MEMBER FUNCTIONS

 Summar i zed_RFQ: :Summar i zed_RFQ(cons t cha r *
new_RFQ_Number_, const char * new_Line_Item_,
const char * new_BSP_, const char *
new_Stock_Number_, const char *
new_Stock_Class_, const char * new_SRAN_,
const char * new_Review_Status_, const char *
new_RFQ_Date_, const char * new_UTN_Number_,
const char * new_Document_Id_, const char
* new_Redirect_Reason_, const char *
new_Award_Date_, double new_Award_Price_,
double new_RFQ_Price_, double
new_Award_Quantity_, double
new_RFQ_Quantity_, long new_RFQ_JDate_,
long new_Award_JDate_) Description: Creates a new
Summarized RFQ with passed data. returns: void
Summarized_RFQ::~Summarized_RFQ()
 Description: Destroys used storage. returns: void

 void Summarized_RFQ::RFQ_Number(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::RFQ_Number()
 Description: Accessor function. returns: value

 void Summarized_RFQ::Line_Item(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::Line_Item()
 Description: Accessor function. returns: value

 void Summarized_RFQ::BSP(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::BSP()
 Description: Accessor function. returns: value

 void Summarized_RFQ::Stock_Number(String& new_value)
 Description: value seting function returns: value

- 244- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 String& Summarized_RFQ::Stock_Number()
 Description: Accessor function. returns: value

 void Summarized_RFQ::Stock_Class(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::Stock_Class()
 Description: Accessor function. returns: value

 void Summarized_RFQ::SRAN(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::SRAN()
 Description: value seting function returns: void

 Summarized_RFQ(3) Gatec Manual
Summarized_RFQ(3)
 void Summarized_RFQ::Review_Status(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::Review_Status()
 Description: Accessor function. returns: value

 void Summarized_RFQ::RFQ_Date(String& new_value)
 Description: value seting function returns: void

 String& Summarized_RFQ::RFQ_Date()
 Description: Accessor function. returns: value

 void Summarized_RFQ::RFQ_Number(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Line_Item(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::BSP(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Stock_Number(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Stock_Class(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::SRAN(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Review_Status(const char * new_value)
 Description: value seting function returns: void

- 245- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void Summarized_RFQ::RFQ_Date(const char * new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Award_Date(const char * new_value)
 Description: value seting function returns: void

void Summarized_RFQ::RFQ_JDate(long new_value)
 Description: value seting function returns: void

 void Summarized_RFQ::Award_JDate(long new_value)
 Description: value seting function returns: void

 long Summarized_RFQ::RFQ_JDate()
 Description: Accessor function. returns: value

 long Summarized_RFQ::Award_JDate()
 Description: Accessor function. returns: value

 void Summarized_RFQ::Award_Price(double new_value)
 Description: Accessor function. returns: value

 double Summarized_RFQ::Award_Price()
 Description: Accessor function. returns: value

 void Summarized_RFQ::RFQ_Price(double new_value)
 Description: Accessor function. returns: value

 double Summarized_RFQ::RFQ_Price()
 Description: Accessor function. returns: value

 void Summarized_RFQ::Award_Quantity(double new_value)
 Description: Accessor function. returns: value

 double Summarized_RFQ::Award_Quantity()
 Description: Accessor function. returns: value

 void Summarized_RFQ::RFQ_Quantity(double new_value)
 Description: Accessor function. returns: value

 double Summarized_RFQ::RFQ_Quantity()
 Description: Accessor function. returns: value

 &new_value)
 Summarized_RFQ & Summarized_RFQ::operator =
(Summarized_RFQ Description: Assignment operator for
Summarized_RFQ. returns: this Summarized_RFQ&.

 Lead Buyer(3) Last change: Tue Jan 4 16:19:23 1994 6

- 246- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Summarized_RFQ(3) Gatec Manual
Summarized_RFQ(3)
 int Summarized_RFQ::operator == (Summarized_RFQ
&new_value)
 Description: Comparison operator for Sumarized_RFQ. returns:
1 if equal 0 if not.

 FILES

 Summarized_RFQ.C Summarized_RFQ.H

- 247- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.4 System Parameters Application

 sys_param.dui is an application that fulfills the user interface
requirements for the system parameters functions of the GATEC
project. It allows the user to view and modify the contents of
tables which hold site specific operations data. The data that can be
operated on are:

Award Piins
Maximum Download Priority Price
Gatec Buyers
System Holidays
Acknowledgement Type and Due Hours
Quote response and delivery times by priority
Email address for warning messages.

 It uses DUI(1) for its user interface and interacts with a data base
through the NARQ(see NARQ) and NORA(see NORA) libraries.
It is written in C++. To get a user perspective on the
sys_param.dui application see the System Parameters User's
Guide [REF000]

 The following sections give a techical overview of the
sys_param.dui application.

2.4.1 Class Hierarchy

The sys_param.dui application has the following class
hierarchy, indentation denotes derivation:

(DUI_Form) - defined in DUI(1)
 System_Parameters_Form

 There is only one form in this application. It does all the querying
and updating.

 See the individual documentation on this class for more details.

2.4.2 Programming Hints

- 248- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 The documentation for the System_Parameters_Form class
should be consulted, as well as the DUI, NARQ and NORA man
pages because this will clarify a lot of the code found in the
application.

 The form makes extensive use of DUI_Table(1)s for displaying
and editing the data base tables, so see the documentation for
DUI_Table to understand how it is used.

 The award piins are added through a DUI_Dialog(1) when the
user requests adding new piins. The DUI_Dialog is more than just
a simple pop-up so see its documentation for more detail.

 None of the changes to the data base are committed until the user
either requests a save or exits the application. This allows for the
user to undo all the changes he has made up to the last save.

2.4.3 System Parameters Source Tree

 The source for sys_param.dui is kept under the DUI(1) source tree
in:
 $CVSROOT/dui/applications/sys_param

 It depends on the NARQ and NORA libraries being in:
$CVSROOT/narqdb/lib

 These must be made before the sys_param.dui application can be
made. To make the sys_param.dui application, cd to its source
directory and type:

 xmkmf; make depend all

 The resulting "sys_param.dui" file will be installed in:

 $CVSROOT/dui/bin

2.4.4 System Parameters From Classes

As mentioned abovem only one form is used in the System
Parameters application; specifically, System_Parameters_Form

- 249- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.4.4.1 System_Parameters_Form

NAME

 System_Parameters_Form - Implements the System Parameters
form used by sys_param(which see).

 SYNOPSIS

 #include "System_Parameters_Form.H"

 class System_Parameters_Form: public DUI_Form { public:
 System_Parameters_Form();
 ~System_Parameters_Form();
 void change_holiday_year();
 void add_piins_dialog();
 void add_piins();
 void add_piins_check_year();
 void save_changes();
 void undo_changes();
 void quit();
 private:
 DUI_Field *download_max_priority;
 DUI_Field *download_max_price;
 DUI_Table *download_buyers;
 DUI_Table *piin_stats;
 DUI_Table *holidays;
 DUI_Field *holiday_year;
 DUI_Field *holiday_count;
 DUI_Table *response_times;
 DUI_Toggle *acknowledge_840;
 DUI_Toggle *acknowledge_850;
 DUI_Toggle *acknowledge_864;
 DUI_Field *acknowledge_due_hours;
 DUI_Field *warning_address;
 DUI_Group *add_piins_group;
 DUI_Toggle * gsa_piin;
 DUI_Field *start_piin;
 DUI_Field * end_piin;
 DUI_Field * piin_prefix;
 Callback *piin_dialog_callback;
 Callback *add_piins_callback;
 Callback *add_piins_check_callback;
 void setup();
 void setup_download();
 void setup_piins();
 void setup_holidays();
 void setup_response_times();
 void save_all();
 void save_download();

- 250- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void save_holidays();
 void save_response_times();
 }
 DESCRIPTION

 This class defines the main form used in the sys_param
application. It provides widgets necessary to perform the
operations defined in sys_param(which see). It deals with the
following tables(see NARQ):
 Piins, Buyer, UserManagerDefaults, PriorityGroup, Holidays

 MEMBER FUNCTIONS

 System_Parameters_Form::System_Parameters_Form()
 Description: Constructor for System_Parameters_Form. All of
the widgets used in the application are instantiated here. returns:
void

 System_Parameters_Form::~System_Parameters_Form()
 Descript ion: Destructor . Deletes add_piins_group,
add_piins_callback, add_piins_check_callback. returns:
 void

 System_Parameters_Form::change_holiday_year()
 Description: Changes holiday year when user enters new year.
returns: void

 System_Parameters_Form::add_piins_dialog()
 Description: Prompts user for new piins constructing a
DUI_Dialog(which see) containing fields for the user to enter piin
numbers and prefix. returns: void

 System_Parameters_Form::add_piins_check_year()
 Description: Checks year on piin prefix and queries user if it
is not this year. Also checks length of prefix to make sure it is 4
characters long, and notifies the user of an error otherwise.
returns: void

 System_Parameters_Form::add_piins()
 Description: Adds new piins to database. returns: void

 System_Parameters_Form::save_changes()
 Description: Saves changes to database calling save_all(). returns:
void

 System_Parameters_Form::undo_changes()
 Description: Rolls back database and call setup to reset the
values on the screen. returns: void

 System_Parameters_Form::quit()

- 251- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Quits the lead buyer application after committing
the database. returns: void

 System_Parameters_Form::setup()
 Description: Sets up values on the form called by constructor.
returns: void

 System_Parameters_Form::setup_download()
 Description: Setup download criteria field values. returns: void

 System_Parameters_Form::setup_piins()
 Description: Setup piin fields values. returns: void

 System_Parameters_Form::setup_holidays()
 Description: Setup holiday field values. returns: void

 System_Parameters_Form::setup_response_times()
 Description: Setup response_times field values. returns: void

 System_Parameters_Form::save_all()
 Description: Save values. returns: void

 System_Parameters_Form::save_download()
 Description: Save download criteria fields values. returns: void

 System_Parameters_Form::save_holidays()
 Description: Save holiday field values. returns: void

 System_Parameters_Form::save_response_times()
 Description: Save response_times field values. returns: void

 FILES

 System_Parameters.C System_Parameters.H

2.5 Windui Application

windui implements DUI(1) client functionality for MS Windows
3.1. As for any DUI client, it implements the widgets defined
by DUI in a manner consistent with the Windows operating
system. To this end, its primary objectives were to find Windows
3.1 equivalents for displaying what is intended by the DUI
widgets, and implement an appropriate communications path for
attaching to the DUI server. See the BASIC IMPLEMENTATION
STRATEGY section for details on how windui met these
requirements and see DUI(1) for an explanation

- 252- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 The client uses the facilities of DUI for generating clients and the
tools contained in Borland C++ and application frameworks 3.1
for creating the windows objects and compiling.

2.5.1 Basic Implementation Strategy

In order to establish a correspondence between windows
interface elements and DUI interface widgets, windui defines a set
of sister classes that correspond one to one with the DUI widgets.
It makes modifications to the DUI widgets(using the facility
provided by DUI) adding data and function members to create
and update instances of the windui classes. They are derived
from Borland's Object Window Library(OWL) classes (see
Object Windows for C++ [REF000]) and are described in more
detail in the CLASS HIERARCHY section.

To meet the communications requirement, windui defines a new
streambuf derivative, called SerialBuf(5), that implements serial
port stream communications, and a class called
Communications_Script(5) which allows a rudimentary scripting
language to be executed over a serial port. Currently this is the
only communications it supports. It establishes a connection to the
remote server by logging in to the remote machine over a
serial line and executing the server from the login shell. The
"logging in" is done by running a communications script(which
can be written to do what ever is necessary to get to the remote
machine, be it dialing a modem or connecting to a terminal
server and issuing a telnet command). Windui retrieves the name
of the application it is going to execute from the first argument
on its command line, and retrieves the search path from a
variable called "APP_PATH" in its shell(DOS) environment.
See the COMMUNICATIONS section for details about the
scripting language.

 The last implementation consideration arises from the desire to
make the windui client as generic as possible and to give the user
as much power as possible in determining how the forms will
display. To this end, the windui program reads a file called
"wres.res" in its current directory. It expects this file to contain a
set of format specifications. These are called DUI resources and
are modeled after XWindow resources. They are discussed in
more detail in the DUI RESOURCES section. These allow the
user to determine the size, placement and other visual aspects
of the forms displayed by DUI applications.

2.5.2 Class Hierarchy

- 253- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Windui has the following class hierarchy, indentation denotes
derivation:

Device_Independent_Bitmap
 Pushbutton_Bitmap
Local_Atom
Table_String
SerialBuf
(TDialog)
 Prompt_Dialog
 Communications_Script
(TWindow) - (WS_OVERLAPPEDWINDOW)
 TMainWindow
 WTWindow
(TButton) - BUTTON(BS_PUSHBUTTON)
 WTButton
(TCheckBox) - BUTTON(BS_CHECKBOX)
 WTCheckBox
(TComboBox) - COMBOBOX
 WTComboBox
(TEdit) - EDIT
 WTEdit
 WTText
(TGroupBox) - (WS_GROUP)
 WTGroupBox
(TListBox) - LISTBOX
 WTListBox
 WTable
(TRadioButton) - BUTTON(BS_RADIOBUTTON)
 WTRadioButton
(TStatic) - STATIC
 WTStatic

 The classes in ()'s are defined in Borland's Object Windows
Library (OWL). They are C++ implementations of the Windows'
predefined window classes. The name of the actual windows'
class and style is given next to the its Borland equivalent. All of
the classes prefixed with "WT" are windui sister
classes. They are associated with their DUI relatives as follows:

WTWindow w_View
WTButton w_Command
WTCheckBox w_Toggle
WTComboBox w_Selection
WTEdit w_Field
WTText w_Text
WTGroupBox w_Group
WTListBox w_Selection
WTable w_Table

- 254- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

WTRadioButton w_Toggle
WTStatic w_Label

 You will notice that the "DUI_" prefix has been replace with the
"w_" prefix for the names of the DUI classes. This is a result of the
code generation for DUI clients (see DUI(1)). You will also
notice that some DUI widgets have more than one sister class. This
is because some of the widgets can have more than one
representation. The representation used is determined by the
resources for the form(see DUI RESOURCES section).

The support classes:

Device_Independent_Bitmap
 Pushbutton_Bitmap
Local_Atom
Table_String
SerialBuf
(TDialog)
 Prompt_Dialog
 Communications_Script

 are not related directly to DUI, but perform functions specific
to the client. The two bitmap classes allow for the user to specify
bitmaps(using resources) to represent commands. The
Local_Atom class is a C++ implementation of Windows' ATOM's
and is used to store resource statements. The Prompt_Dialog,
Communications_Script, and SerialBuf classes are used by the
serial communications package.

 Each of the windui classes has its own individual documentation
which should be consulted for more detail. There is also
documentation on the client extensions made to the original DUI
classes. It is under the modified class name(e.g. w_Field(5) will
give the client extensions made to DUI_Field).

2.5.3 DUI Resources

 The word "resources" in this context does not refer to Windows'
resources which are are an integral part of the Windows' operating
system. DUI resources are textual lines of the form:

 <path>.<resource name>: <resource value>

 They are read by the client from a file called "wres.res" at startup
and are referenced throughout the session by the widgets
instantiated during the session for formatting and representation

- 255- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

information.

 The <path> component of the resource statement can have the
following forms:

 Absolute path:

Each element in the dot "." separated list of elements is
either a widget name(i.e. the name of that particular
instance of a widget) or a class name if the widget has no
name (e.g. "Group" if the widget is a w_Group). This path
takes first precedence in the case of path conflicts. Thus:

 <widget name | widget class name>[. <widget name |
widget class name>]...

example 1: Main Form.First Group.First Field.length: 6
example 2: Main Form.Group.First Field.length: 6

 View relative path:

This path includes only a view name, and a widget name. It
refers to any widget with this name on the named view. It
takes second precedence in conflicts. Thus:
 <view name>*<widget name>

 example 1: Main Form*First Field.length: 6

 Relative path:

This path takes just a widget name. It refers to any widget
with this name. It takes third precedence. Thus:
 *<widget name>

 example 1: *First Field.length: 6

 View-class name path:

This takes a view name and a class name. It refers to any
widget of this class type on the named view. It takes
fourth precedence. Thus:
 <view name>*<class name>

 example 1: Main Form*Field:length: 6

 Class name path:

This takes just a class name. It refers to any widget with
this class. It takes fifth precedence. Thus:
 <class name>

- 256- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 example 1: Field:length: 6

 Defaults:

 All widgets have a default for each of the resources they
interpret.

A detailed list of the resource names and their meaning are
given below by widget.

 View:

name - Any textual value
(the name of the widget).

Accepts no other resource modifications.

All Widgets (except views):

name - Any textual value (the name of the widget).
fontname - name of a type face.
fontheight - font height metric (numeric)
fontfixed - is font fixed width ("yes", "no").
fontunderline - is font underlined ("yes", "no").
fontitalic - is font italic ("yes", "no").
fontweight - how bold is font (numeric).

 Field:

defaultvalue- initial value to give field if it has no value.
length - length of field in "M" characters of chosen font.
(numeric)

 Text:

defaultvalue- initial value to give field if it has no value.
length - length of field in "M" characters of chosen font.
(numeric)
itemsshown - Number of lines to show (numeric).
width - width in pixels (numeric).
height- height in pixels (numeric).
waitedfor - stop waiting when this is received ("yes",
"no").

 Selection:

defaultvalue - initial value to give field if it has no value.
length - length of field in "M" characters of chosen font.
(numeric)

- 257- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

itemsshown - Number of lines to show (numeric).
width - width in pixels (numeric).
height- height in pixels (numeric).
wait - wait for another widget to be sent? ("yes", "No").

 Group:

layout - direction to lay out widgets ingroup ("horizontal",
"vertical"). dimensions - number of widgets
horizontallyand vertically (dimension e.g. 2x3).
horizontalspacing - number of pixels between widgets
horizontally. (numeric)
verticalspacing- number of pixels between widgets
vertically. (numeric)
explicitdimensions - number of widgets to lay out in each
row. (space separated list of numbers e.g. 3 4 1 5).

 Toggle:

defaultvalue - initial value to give field if it has no value.
representation - type of toggle ("radio", "check").
length - length of field in "M" characters of chosen font.
(numeric)

Command:

verticalspacing - for groups of buttons, number of pixels
between elements vertically (numeric).
length - length of field in "M" characters of chosen font.
(numeric)
bitmap - file name of Windows DIB to use as button
representation (string, full path name of bitmap
file.).
width - width in pixels (numeric).
height - height in pixels (numeric).

 The code for accessing these resources is in w_widget.cc and
w_widget.hh (the extensions to the DUI Widget class). It is kept
here because it needs to be inherited by all other widgets.

2.5.4 Communications

As stated above windui communicates with the remote server
through a serial port. It retrieves the serial port configuration
information from a file called "com.cfg" which is modified using
an auxiliary windui program called "setup.exe". This program
must be run to set up the serial port configuration information

- 258- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

and script file that will be used to establish the connection. It has
options for data bits, stop bits, baud rate, parity and connection
type. The connection type is the switch that specifies what script
file to execute. Connection type has three options, network,
modem, direct. These are associated with script files
"network.scr", "modem.scr", and "direct.scr" in the current
directory, and can be written to do anything the script writer
needs to do to establish a connection.

The scripting language consists of the following commands,
which must start at the beginning of a line:

 transmit <value up to new line> waitfor <timeout in 100th's of a
second> <value up to new line> pause <time to pause in 100th's of
a second>

In addition the "transmit" can have the following key words as its
value:
 ATDTTELEPHONENUMBER RETURN USERID PASSWORD

The ATDTTELEPHONENUMBER causes a prompt to the user
asking for a telephone number which is tacked on to the end an
"atdt" string and sent to the port. RETURN causes a blank line
to be sent. USERID and PASSWORD both prompt the user for an
entry and send the entered string to the serial port as typed.

 The script can have any number of blank lines and lines that begin
with "#"(comments). These are ignored.

 In addition to the script used to connect, there is a script used to
disconnect. This script is called "discon.scr". It is run no matter
which connection type is selected.

 Some modifications were made to the DUI Session class in
order to support Windows serial communication. DUI provides no
facility for modifying this class so a separate copy of the file
with modification is kept in the windui source tree. See
Session(5) for more details about the modifications.

2.5.5 WINDUI Source Directory

 The source for the windui client is kept in the DUI tree. It is not
compiled there but has source dependencies on DUI libraries'
source. It is kept in:

 $CVSROOT/dui/src/clients/win3.1

- 259- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 The DUI libraries must be made first before the windui client.
Once they are made, the windui client can be made by going to the
source directory and typing:

 xmkmf; make windui

 This collects the source it needs from the DUI libraries, changes
file names to those suitable for DOS, and copies all the changed
source files to a directory:
 $CVSROOT/dui/src/clients/win3.1/changed

 The files in this directory are DOS files and can be copied to a
Windows machine and compiled using Borland C++ 3.1.

2.5.6 WINDUI Classes

The following classes/objects are made use of in the windui
application:

 Communications_Script
 Device_Independent_Bitmap
 Local_Atom
 Prompt_Dialog
 Pushbutton_Bitmap
 TMainWindow
 Table_String
 WTButton
 WTCheckBox
 WTComboBox
 WTEdit
 WTGroupBox
 WTListBox
 WTRadioButton
 WTStatic
 WTText
 WTWindow
 WTable
 w_Command
 w_Component
 w_End_Command
 w_Field
 w_Group
 w_Label
 w_Selection
 w_Table
w_Text
 w_Toggle

- 260- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 w_View
 w_Widget
Session
SerialBuf

They are described in the following sections.

2.5.6.1 Communications_Script

NAME

 - class for running a communications script file on a stream.

 SYNOPSIS

 #include "Communications_Script.H"

 class Communications_Script: public TDialog { private:
 iostream *iostream_;
 STRING script_;
 ifstream *scriptfile_;
 STRING error_;
 STRING line_;
 STRING value_;
 LONG time_out_;
 int timer_;
 char *compstring_;
 public:
 Communications_Script(PTWindowsObject AParent, iostream *thisiostream, char
*newscript = 0, int real = 0);
 ~Communications_Script();
 int run_script();
 void script(char *nscript);
 char *script() { return script_; };
 char *error() { return error_; };
 virtual void SetupWindow();
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void WMTimer(RTMessage Msg) = [WM_FIRST + WM_TIMER];
 virtual void WMClose(RTMessage Msg) = [WM_FIRST + WM_CLOSE];
 virtual void WMSetCursor(RTMessage Msg) = [WM_FIRST + WM_SETCURSOR];
 protected:
 void ProcessNextCommand();
 void WaitForCommand();
 void TransmitCommand();
 void PauseCommand();
 void ShiftCompString();
 private:
 Communications_Script *real_dialog_;
 int real_;
 void setreal() { real_=1; };

- 261- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 }
 DESCRIPTION

 This class is used to run a script of io operations on a stream
inside a windows application. It pops up an invisible dialog and
runs commands of the following form from a script file:

 Waitfor <timeout in seconds> <string to waitfor> Transmit
<string to transmit> Pause <time to pause>

 It uses Window's timers to process timeouts and pauses.

 MEMBER FUNCTIONS

 AParent,
Communications_Script::Communications_Script(PTWindowsObj
ect iostream *thisiostream, char
*newscript, int real) Description: Constructor for
Communications_Script. returns: void

 void Communications_Script::script(char *nscript)
 Description: Sets the script file to be processed. returns: void

 int Communications_Script::run_script()
 Description: This function actually runs the script. To facilitate
error message passing this function creates a duplicate
Communications_Script object with "real" set to true and
executes that dialog. This is because dialogs are deleted when they
terminate. returns: void

 Communications_Script::~Communications_Script()
 Description: Destructor. deletes memory and file descriptors.
returns: void

 void Communications_Script::WMCommand(RTMessage Msg)
 Description: Lines are read from the script file and processed
using messages. this script file can have blank lines and comments
beginning with The allowed commands are: Waitfor <timeout
in seconds> <string to waitfor> Transmit <string to transmit>
Pause <time to pause> returns: void

 void Communications_Script::WMTimer(RTMessage Msg)
 Description: This is the function that is called when the dialog
receives a timer message. A timer is created for "pause" and
"waitfor" commands. A timer message is sent at .01 second
intervals. If it is a pause timer message then time is simply counted
down, if it is a waitfor timer, then characters are read from the
stream and concatentated onto a test string which is shifted one
character every time a character is read and this string is compared
to the expected value and if it matches before the timeout is

- 262- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

reach, the next command is processed else a timeout is signified.
returns:
 void

 void Communications_Script::WMClose(RTMessage Msg)
 Description: Called when the window is closed. It kills any left
over timers and calls TDialog::WMClose(). returns: void

 void Communications_Script::WMSetCursor(RTMessage Msg)
 Description: this function is called when the window receives a
WM_SETCURSOR message. It calls the applictions main window
cycle_cursor function. This is for use with the GATEC
application specifically and should be removed for generic use.
returns: void

 void Communications_Script::SetupWindow()
 Description: This funciton is called when the dialog is executed. It
moves the dialog window off the visible screen and makes it 0
length and 0 width so it will be invisible. returns: void

 void Communications_Script::ProcessNextCommand()
 Description: This function sends a WM_COMMAND message
with a PROCESS_NEXT_COMMAND argument, so the
WMCommand() function will read the next command from the
script file. returns: void

 void Communications_Script::WaitForCommand()
 Description: This function sends a WM_COMMAND message
with a WAIT_FOR_COMMAND argument, so the
WMCommand()
 function perform a waitfor command. returns: void

 Description:
 This function sends a WM_COMMAND message with a
TRANSMIT_COMMAND argument, so the WMCommand()
function perform a transmit command. returns: void

 Description:
 This function sends a WM_COMMAND message with a
PAUSE_COMMAND argument, so the WMCommand()
function will perform a pause command. returns: void

 void Communications_Script::ShiftCompString()
 Description: This function shifts the test string to the left by one
character. returns: void

 FILES

 comscr.cpp comscr.hpp

- 263- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.2 Device_Independent_Bitmap

NAME

 Device_Independent_Bitmap - Class encapsulating Windows
DIB's.

 SYNOPSIS

 #include "Device_Independent_Bitmap.H"

 class Device_Independent_Bitmap { private:
 char *pixeldata_;
 HBITMAP bitmap_handle_;
 BITMAPFILEHEADER bitmap_file_header_;
 BITMAPINFOHEADER bitmap_info_header_;
 char *info_header_and_RGB_info_;
 HDC resize_memory_DC_1;
 int status_;
 protected:
 public:
 Device_Independent_Bitmap();
 Device_Independent_Bitmap(char *file_name);
 ~Device_Independent_Bitmap();
 HBITMAP bitmap_handle() { return bitmap_handle_; };
 void load_from_file(char *file_name);
 int delete_bitmap();
 int create_for_context(HDC destination_dc);
 int status() { return status_; };
 BITMAPINFOHEADER * bitmap_info_header() { return &bitmap_info_header_; };
 long bitmap_width() { return bitmap_info_header_.biWidth;
 };
 long bitmap_height() { return bitmap_info_header_.biHeight; };
 }

 DESCRIPTION

 This class provides functionality for dealing with Window's
DIB's. It provides methods for reading DIB descriptions from a
file and creating a DIB image for a supplied device context.

 MEMBER FUNCTIONS

 Device_Independent_Bitmap::Device_Independent_Bitmap()
 Description: Empty Constructor. Creates an empty DIB. returns:
void

 *file_name)
 Device_Independent_Bitmap::Device_Independent_Bitmap(char

 Windui(5) Last change: Wed Jan 5 18:03:40 1994 1

- 264- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Device_Independent_Bitmap(5)�Gatec
Manua�Dl�evice_Independent_Bitmap(5)
 Description: Constructor accepting file name as an argument.
It reads in the DIB description from the file expecting it to be in
DIB format. returns: void

 Device_Independent_Bitmap::~Device_Independent_Bitmap()
 Description: Destructor. Cleans up memory usage. returns: void

 vo id Dev ice_ Independen t_Bi tmap : : l oad_ f rom_f i l e (cha
*file_name)
 Description: Loads a new bitmap from the file named by arg
"file_name". returns: void

 destination_dc)
 int Device_Independent_Bitmap::create_for_context(HDC
Description: Creates a DIB for the passed device context. returns:
int, -1 if failure, 0 if success.

 int Device_Independent_Bitmap::delete_bitmap()
 Description: Deletes bitmap handle if one was created. returns: int
0 if success, -1 if failure.

 FILES

 bitmap.cpp bitmap.hpp

- 265- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.3 Local_Atom

NAME

 Local_Atom - Class encapsulating Windows 3.1 Atoms.

 SYNOPSIS

 #include "Local_Atom.H"

 class Local_Atom: public Object { private:
 ATOM atom_handle_;
 char *atom_value_;
 public:
 Local_Atom();
 Local_Atom(char *new_atom);
 Local_Atom(ATOM new_atom);
 ~Local_Atom();
 /* pure virtual functions needing definition from Object. */ Local_Atom(Local_Atom&
new_atom);
 virtual hashValueType hashValue() const ;
 virtual classType isA() const;
 virtual int isEqual(const Object& testObject) const ;
 virtual char *nameOf() const ;
 virtual void printOn(ostream& outputStream) const ;
 virtual int isAssociation() const { return 0; }
 /* additional useful behavoirs. */

 char *atom_value();
 ATOM atom_handle();
 int valid() const { return (atom_handle_ == 0 ? 0 : 1);
 };
 }

 DESCRIPTION

 This class is used for storing values in Windows 3.1 Local Atoms
which are entries in a systemic hash table.

 MEMBER FUNCTIONS

 Local_Atom::Local_Atom(char *new_atom)
 Description: Constructor for atom entry. install new character
string into the local atom table. returns:
 void

 Local_Atom::Local_Atom(Local_Atom& new_atom)
 Description: copy constructor for atom entry. install new character
string into atom table. returns: void

 Local_Atom(5) Gatec Manual Local_Atom(5)

- 266- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Local_Atom::Local_Atom(ATOM new_atom)
 Description: Constructor for atom entry. attach atom if there is
an associated string in the atom table. returns: void

 Local_Atom::Local_Atom()
 Description: Constructor for atom entry. Create an invalid
Local_Atom Object. returns: void

 Local_Atom::~Local_Atom()
 Description: Destructor for atom entry. Remove an atom entry
from the local atom table. returns: void

 char *Local_Atom::atom_value()
 Description: Retrieve atom value. returns: void

 ATOM Local_Atom::atom_handle()
 Description: Retrieve atom handle returns: ATOM, the handle.

 hashValueType Local_Atom::hashValue()
 Description: A Function that need to be defined for a derivative
of Object. returns: hashValueType, the value.

 classType Local_Atom::isA()
 Description: Identifier function. Must be defined by a derivative
of object. returns: classType, localatom- Class always.

 int Local_Atom::isEqual(const Object& testObject)
 Description: Must be defined by a derivative of Object. returns: int
1 if equal, 0 otherwise.

 char *Local_Atom::nameOf()
 Description: Must be defined by a derivative of Object. returns:
char *, "Local_Atom" always.

 void Local_Atom::printOn(ostream& outputStream)
 Description: Prints the value and handle labeled appropriately
onto "outputStream". returns: void

 FILES

 atomcl.cpp atomcl.hpp

- 267- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.4 Prompt_Dialog

NAME

 Prompt_Dialog - generic prompt dialog.

 SYNOPSIS

 #include "Prompt_Dialog.H"

 class Prompt_Dialog: public TDialog {

 public:
 Prompt_Dialog(PTWindowsObject AParent, char *prompt_string, char
**entered_value, int max, int hidden = 0);
 ~Prompt_Dialog();
 virtual void SetupWindow();
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 private:
 char **entered_value_;
 char *prompt_string_;
 int max_;
 int hidden_;
 }

 DESCRIPTION

 This is a generic dialog for popping up a single field dialog using
a passed in prompt. It is used by Communications_Script when
certain transmission keywords are used.

 MEMBER FUNCTIONS

 *prompt_string,
Prompt_Dialog::Prompt_Dialog(PTWindowsObject AParent,
char char **entered_value, int max, int hidden)
 Description: Constructor. It accepts a prompt string which will
appear on the dialog, a char ** which will contain the string that
the user enters, and a length for the entered_string value. returns:
void

 Prompt_Dialog::~Prompt_Dialog()
 Description: Destructor. Does nothing. returns: void

 void Prompt_Dialog::SetupWindow()
 Description: This function sets the prompt string for this dialog.
returns: void

 Prompt_Dialog(5) Gatec Manual Prompt_Dialog(5)
 void Prompt_Dialog::WMCommand(RTMessage Msg)
 Description: This function retrieves the value entered by the user

- 268- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

and then closes down the window. returns:
 void

 FILES

 prompt.cpp prompt.hpp

- 269- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.5 Pushbutton_Bitmap

NAME

 Pushbutton_Bitmap - class for displaying a bitmap as a push
button.

 SYNOPSIS

 #include "Pushbutton_Bitmap.H"

 class Pushbutton_Bitmap : public Device_Independent_Bitmap { private:
 HDC temporary_dc_;
 POINT *polygon_;
 public:
 Pushbutton_Bitmap(char * file_name = 0);
 ~Pushbutton_Bitmap();
 int pushbutton_width() { return bitmap_width()+10; };
 int pushbutton_height() { return bitmap_height()+10; };
 void selected(HDC destination_hdc, int dX, int dY, int dH, int dW);
 void pushed(HDC destination_hdc, int dX, int dY, int dH, int dW);
 void unselected(HDC destination_hdc, int dX, int dY, int dH, int dW);
 void disabled(HDC destination_hdc, int dX, int dY, int dH, int dW);
 void draw_selection_line(HDC destination_hdc, int dX, int dY, int dH, int dW, int
is_selected);
 void draw_border(HDC destination_hdc, int dX, int dY, int dH, int dW);
 void upperleft_polygon(HDC destination_hdc, int dX, int dY, int dH, int dW, int
is_shadow);
 void lowerright_polygon(HDC destination_hdc, int dX, int dY, int dH, int dW, int
is_shadow);
 }

 DESCRIPTION

 This class is used to create a push button out of bitmap. It draws
edges on the outside of the bitmap and allows for these to be
changed reflecting the following states:

 selected, pushed, unselected, disabled

 It is derived from Device_Independent_Bitmap(which see).

 MEMBER FUNCTIONS

 Pushbutton_Bitmap::Pushbutton_Bitmap(char * file_name)
 Description: Constructor accepting filename as argument which is
passed to constructor for base class
Device_Independent_Bitmap. returns: void

 Pushbutton_Bitmap::~Pushbutton_Bitmap()
 Description: Destructor. It does nothing. returns:

- 270- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void
 dY, void Pushbutton_Bitmap::selected(HDC destination_hdc, int
dX, int int dH, int dW) Description: This function paints
the bitmap unto "destination_hdc", and draws it such that it has a
bold outline(2 pixel black border) which signifies selection.
returns: void

 dY, void Pushbutton_Bitmap::pushed(HDC destination_hdc, int
dX, int int dH, int dW) Description: This function
paints the bitmap onto "destination_hdc" such that it is selected()
and has button edges whose shading is reversed which signifies
pushed. returns: void

 int dY, void Pushbut ton_Bitmap: :unselected(HDC
destination_hdc, int dX, int dH, int dW) Description:
This function draws the bitmap with a plain (1 pixel black) border.
Which signifies unselected (the default condition). returns: void

 dY, void Pushbutton_Bitmap::disabled(HDC destination_hdc, int
dX, int int dH, int dW) Description: There is no
"disabled" view at present so this function is identical to
unselected(). returns: void

 int dX, void Pushbutton_Bitmap::draw_selection_line(HDC
destination_hdc, int dY, int dH, int dW,
int is_selected) Description: This function draws the 2 pixel
selection border in black if it is selected or in the background
window color if it is unselected. returns: void

 void Pushbutton_Bitmap::draw_border(HDC destination_hdc, int
dX, int dY, int dH, int dW)
 Description: This function draws the 1 pixel border around the
bitmap. It is always drawn. returns: void

 int dX, void Pushbutton_Bitmap::upperleft_polygon(HDC
destination_hdc, int dY, int dH, int dW,
int is_shadow) Description: This function draws the upper left
polygon around the top and left sides of the bitmap. If the button is
pushed this is shaded otherwise it is white. returns:
 void

 int dX, void Pushbutton_Bitmap::lowerright_polygon(HDC
destination_hdc, int dY, int dH, int dW,
int is_shadow) Description:
 This function draws the lower right polygon around the bottom
and right sides of the bitmap. If the button is pushed this is white
otherwise it is shaded. returns:
 void

 FILES

- 271- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 buttbmp.cpp buttbmp.hpp

2.5.6.6 TMainWindow

NAME

 TMainWindow - main window for windui.

 SYNOPSIS

 #include "TMainWindow.H"

 class TMainWindow : public TWindow { public:
 TMainWindow(PTWindowsObject AParent, LPSTR ATitle, char *appname);
 ~TMainWindow();
 virtual void SetupWindow();
 virtual void WMSetCursor(RTMessage Msg) = [WM_FIRST + WM_SETCURSOR];
 char *appname;
 int cycle_cursor();
 }

 DESCRIPTION

 This class defines the main window for Windui(which see). This
window stays minimized for a windui session.

 MEMBER FUNCTIONS

 char *nappname)
 TMainWindow::TMainWindow(PTWindowsObject AParent,
LPSTR ATitle, Description: Define TMainWindow, a TWindow
constructor. returns: void

 TMainWindow::~TMainWindow()
 Description: Destructor. returns: void

 void TMainWindow::SetupWindow()
 Description: Establishes a Client_Session. returns:
 void

 void TMainWindow::WMSetCursor(RTMessage Msg)
 Description: Responds to WM_SETCURSOR message by
calling cycle_cursor(). returns: void

 int TMainWindow::cycle_cursor()
 Description: Cycles through one of the seven states each time it
is called displaying the cursor associated with that state. This is
called each time the client goes into a waiting condition. It is
used to animate the hourglass cursor. returns: int, 1 if changed, 0

- 272- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Windui(5) Last change: Wed Jan 5 18:02:39 1994 1

 TMainWindow(5) Gatec Manual TMainWindow(5)
 otherwise.

 FILES

 tmainwin.cpp tmainwin.hpp

- 273- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.7 Table_String

NAME

 Table_String - string class used by WTable.

 SYNOPSIS

 #include "Table_String.H"

 class Table_String { private:
 int starting_position_;
 int insert_position_;
 char *string_;
 int length_;
 public:
 Table_String(char *value = "");
 Table_String(Table_String& value);
 ~Table_String();
 void start_position(int pos_vector)
 { starting_position_ += pos_vector;
 if (starting_position_ >= length_)
 starting_position_ = length_-1;
 if (starting_position_ < 0)
 starting_position_ = 0;
 };
 void insert_position(int pos_vector)
 { insert_position_ += pos_vector;
 if (insert_position_ > length_)
 insert_position_ = length_;
 if (insert_position_ < 0)
 insert_position_ = 0;
 };
 int start_position() { return starting_position_; };
 int insert_position() { return insert_position_; };
 void reset_start() { starting_position_ = 0;};
 void reset_insert() { insert_position_ =0;};
 char *shifted_value();
 char *value() { return string_; };
 int shifted_len();
 void insert_char(int c, int pos = -1);
 void delete_char(int pos = -1);
 int length() { return length_; };
 Table_String &operator = (const char *new_value);
 void set(const char *new_value);
 int current_char();
 int previous_char();
 }

 DESCRIPTION

- 274- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 This is a string class used by WTable which provides
functionality for keeping track of an insertion point and starting
point. It is used for values in a text edit window.

 MEMBER FUNCTIONS

 Table_String::Table_String(char *value)
 Description: Constructor accepting a value. returns:
 void

 Table_String::Table_String(Table_String& value)
 Description: Copy Constructor. returns: void

 Table_String::~Table_String()
 Description: Destructor. Deletes value. returns: void

 char *Table_String::shifted_value()
 Description: Return char value starting at starting position.
returns: char *,shifted value.

 int Table_String::shifted_len()
 Description: Return length of string starting at starting position.
returns: int, shifted length.

 void Table_String::insert_char(int c, int pos)
 Description: Insert character at insert position or arg. returns: void

 void Table_String::delete_char(int pos)
 Description: Delete character at insert position or arg. returns:
void

 Table_String &Table_String::operator = (const char *new_value)
 Description: Sets the value to new_value. returns:
 Table_String &, *this.

 void Table_String::set(const char *new_value)
 Description: Sets the value to new_value(really). returns: void

 Windui(5) Last change: Wed Jan 5 18:02:40 1994 2

 Table_String(5) Gatec Manual Table_String(5)
 int Table_String::current_char()
 Description: Accessor function. returns: int, char at
insert_position, or 0 if at end.

 int Table_String::previous_char()
 Description: Accessor function. returns: int, char before insert
position or 0 if at beginning.

- 275- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 FILES

 tblstrng.c tblstrng.h

2.5.6.8 WTButton

NAME

 WTButton - defines a Windows pushbutton used by the DUI
Windows client.

 SYNOPSIS

 #include "WTButton.H"

 class WTButton : public TButton { protected:
 w_Command * dui_element_;
 static HFONT resource_font_;
 Pushbutton_Bitmap *bitmap_;
 public:
 int end_view_;
 WTButton(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, LPSTR
aTitle, w_Command * aSibling, PTModule aModule = NULL, int aEnd = 0, BOOL isDefault =
0);
 ~WTButton();
 w_Command * dui_element() { return dui_element_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 /* virtual void WMPaint(RTMessage Msg) = [WM_FIRST + WM_PAINT];
 */ virtual int end_view() { return end_view_; };
 virtual int end_view(int aEnd) { end_view_ = aEnd; return 1; };
 virtual void SetupWindow();
 virtual void ODADrawEntire(DRAWITEMSTRUCT &DrawInfo);
 virtual void ODASelect(DRAWITEMSTRUCT &DrawInfo);
 virtual void ODAFocus(DRAWITEMSTRUCT &DrawInfo);
 void iupdate();
 void DuiSetup();
 }

 DESCRIPTION

 This class is a derivative of the Borland TButton with DUI
functionality added. It is used as the Windows element for the
DUI_Command and DUI_End_Command.

 Functionality is also added to allow buttons to be represented as
bitmaps set according to the buttons resources (see Windui).

 MEMBER FUNCTIONS

 aY, int aW, WTButton::WTButton(PTWindowsObject aParent, int

- 276- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

aId, int aX, int int aH, LPSTR aTitle, w_Command *
aSibling, PTModule aModule , int aEnd , BOOL isDefault)
Description: Constructor for the dui TButton object. It checks
resources to find out if there is a bitmap associated with this
command and what font commands will have and sets them if need
be. returns: void

 WTButton::~WTButton()
 Description: Destructor for dui TButton object. deletes bitmap if
present. returns: void.

 void WTButton::WMCommand(RTMessage Msg)
 Description: This function is called when the user clicks this
button. The button will tell it's dui command sister to choose
herself, then it tells the view to send itself back to the application.
If it is an End_Command type it asks the parent window to destroy
itself. Responds to WM_COMMAND messages which are relayed
by the parent window(which is the one who really gets the
message). returns: void.

 void WTButton::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to compute the button
size. The buttons height is the height of it's label in current font or
"height" if specified. The buttons width is the width of it's label in
font or "length" of upper-case characters in font, or "height" if
specified. It calls TButton::SetupWindow() first to setup the other
attributes of TButton(), it then resizes itself dependent on the
resources it has. It actually calls DuiSetup()
 which does most of this. returns: void.

 WTButton::DuiSetup()
 Description: Determines and sets the buttons height, width and
font. returns: void.

 void WTButton::iupdate()
 Description: Calls DuiSetup if the buttons name has changed else
just checks the buttons read only status and disables it if read only
is true. returns: void

 void WTBut ton: :ODADrawEnt i re(DRAWITEMSTRUCT
&DrawInfo)
 Description: Is called when the button needs to be drawn and it
has a bitmap associated with it. It paints the bitmap according to
the button's selection status. returns: void

 void WTButton::ODAFocus(DRAWITEMSTRUCT &DrawInfo)
 Description: Is called when the button gets or loses the focus. It
draws the button accordingly. returns:
 void

- 277- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void WTButton::ODASelect(DRAWITEMSTRUCT &DrawInfo)
 Description: Is called when the button is pushed and when it is
released. It draws the button in one of those states. returns: void

 FILES

 wtbutton.cpp wtbutton.hpp

2.5.6.9 WTCheckBox

NAME

 WTCheckBox - defines a Windows check box used by the DUI
Windows client.

 SYNOPSIS

 #include "WTCheckBox.H"

 class WTCheckBox : public TCheckBox { protected:
 w_Toggle * dui_element_;
 static HFONT resource_font_;
 public:
 WTCheckBox(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, LPSTR
aTitle, w_Toggle * aSibling, PTGroupBox aGroup = NULL, PTModule aModule = NULL);
 ~WTCheckBox();
 w_Toggle * dui_element() { return dui_element_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TCheckBox with dui
functionality added. It is the Window's element for the
DUI_Toggle(which see) class.

 MEMBER FUNCTIONS

 int aY, WTCheckBox::WTCheckBox(PTWindowsObject aParent,
int aId, int aX, int aW,int aH, LPSTR aTitle, w_Toggle *
aSibling, PTGroupBox aGroup, PTModule aModule)
Description: Constructor for the dui TCheckBox object. It sets the
font for WTCheckBox if provided in the resources (see Windui).
returns: void

 WTCheckBox::~WTCheckBox()

- 278- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Destructor for dui TCheckBox object. returns: void

 void WTCheckBox::WMCommand(RTMessage Msg)
 Description: This function is called when the user clicks this
button. The button will tell it's dui toggle sister to toggle herself.
returns: void

 void WTCheckBox::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the Toggle dui element. It calls TCheckBox::SetupWindow() first
to setup the other attributes of TCheckBox. The function
DuiSetup() actually does most of the work. returns: void

 WTCheckBox::DuiSetup()
 Description: This function sets the height, width and font for the
check box. returns: void

 void WTCheckBox::iupdate()
 Description: This function is called when the widget is received
from the application. If the name of the widget has changed it calls
DuiSetup() else it just sets the check status. returns: void

 FILES

 wtcheckb.cpp wtcheckb.hpp

- 279- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.10 WTComboBox

NAME

 WTComboBox - defines a Windows' Combo Box used by the DUI
Windows' client.

 SYNOPSIS

 #include "WTComboBox.H"

 class WTComboBox: public TComboBox { protected:
 w_Selection *dui_element_;
 static HFONT resource_font_;
 WTStatic *Title_;
 public:
 WTComboBox(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, w_Selection
* aSibling, PTModule aModule = NULL, DWORD aStyle = CBS_DROPDOWNLIST);
 ~WTComboBox();
 w_Selection *dui_element() { return dui_element_; };
 TStatic *Title() { return Title_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TComboBox with DUI
functionality added. It is a Windows element for the
DUI_Selection(which see) class. It is one of the optional
representations for this class. (See DUI).

 MEMBER FUNCTIONS

 WTComboBox::WTComboBox(PTWindowsObject aParent, int
aId, int aX, int aY, int aW, int aH, w_Selection * aSibling,
PTModule aModule, DWORD aStyle)
 Description: Constructor for dui TComboBox control. It
establishes the font for WTComboBox if necessary. returns: void

 WTComboBox::~WTComboBox()
 Description: Destructor for dui TComboBox control. returns: void

 void WTComboBox::WMCommand(RTMessage Msg)
 Description: This function is called when the user selects a new
string in the ComboBox. When this happens we want to select it in
the dui Selection object as well. returns: void

 void WTComboBox::SetupWindow()

- 280- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the selection dui element. It calls TComboBox::SetupWindow()
first to setup the other attributes of TComboBox(), it then calls
DuiSetup() to set up this instance. returns: void

 WTComboBox::DuiSetup()
 Description: Sets up the height, width, font and initial value for
this widget. returns: void

 void WTComboBox::iupdate()
 Description: This function is called when the associated DUI
object is received from the application. If the name is different it
calls DuiSetup() otherwise it just resets the contents of the
Windows' element. returns: void

 FILES

 wtcombob.cpp wtcombob.hpp

- 281- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.11 WTEdit

NAME

 WTEdit - defines a Windows' edit used by the DUI Windows'
client.

 SYNOPSIS

 #include "WTEdit.H"

 class WTEdit: public TEdit { protected:
 w_Field *dui_element_;
 static HFONT resource_font_;
 WTStatic *Title_;
 public:
 WTEdit(PTWindowsObject aParent, int aId, LPSTR aContents, int aX, int aY, int aW, int aH,
w_Field * aSibling, PTModule aModule = NULL, int aMult = 0);
 ~WTEdit();
 w_Field *dui_element() { return dui_element_; };
 TStatic *Title() { return Title_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TEdit with DUI
functionality added. It acts as the Windows' element for the
DUI_Field(which see) class. (See Windui).

 MEMBER FUNCTIONS

 int aX, WTEdit::WTEdit(PTWindowsObject aParent, int aId,
LPSTR aContents, int aY, int aW, int aH, w_Field * aSibling,
PTModule aModule, int aMult) Description:
 WTEdit(): constructor for dui TEdit control. Sets up font for
WTEdit if necessary. returns: void

 WTEdit::~WTEdit()
 Description: Destructor for dui TEdit control. returns: void

 void WTEdit::WMCommand(RTMessage Msg)
 Description: This function is called when the edit control receives
an EN_KILLFOCUS message from windows. We want to run the
contents of the field against it's modifiers and constraints when the
user attempts to move out of this field, and give him an error
notification when the constraints fail. This may be a nazi way of
applying field constraints. But we want real constraints. If the

- 282- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

value is invalid a message box is displayed with the error in it, The
user is given the choice of continuing using the old value(the value
before he entered anything) or retrying. returns: void

 void WTEdit::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the field dui element. It calls TEdit::SetupWindow() first to setup
the other attributes of TEdit(), it then fills in the value, and resizes
itself dependent on the resources it has. It calls DuiSetup() to do
the sizing. returns: void

 WTEdit::DuiSetup()
 Description: Sets the height, width, font and initial values for list
box. returns: void

 void WTEdit::iupdate()
 Description: This function is called when the associated widget is
received from the application. If the name has changed it calls
DuiSetup() otherwise it resets the value of the edit. returns: void

 FILES

 wtedit.cpp wtedit.hpp

- 283- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.12 WTGroupBox

NAME

 WTGroupBox - defines a Windows' group box used by the DUI
Windows' client.

 SYNOPSIS

 #include "WTGroupBox.H"

 class WTGroupBox: public TGroupBox { protected:
 w_Component *dui_element_;
 static HFONT resource_font_;
 public:
 WTGroupBox(PTWindowsObject aParent, int aId, LPSTR aContents, int aX, int aY, int aW,
int aH, w_Component * aSibling, PTModule aModule = NULL);
 ~WTGroupBox();
 w_Component *dui_element() { return dui_element_; };
 virtual void SetupWindow();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TGroupBox with DUI
functionality added. It acts as the Windows' element for the
DUI_Group(which see) class. (See Windui). It is either not visible
at all or visible as a box around the components in its group.

 MEMBER FUNCTIONS

 aContents, WTGroupBox::WTGroupBox(PTWindowsObject
aParent, int aId, LPSTR int aX,int aY, int aW, int
aH, w_Component * aSibling, PTModule aModule)
Description: Constructor for dui TGroupBox control. Establishes
font if necessary. returns: void

 WTGroupBox::~WTGroupBox()
 Description: Destructor for dui TGroupBox control. returns: void

 void WTGroupBox::SetupWindow()
 Description: Calls TGroupBox::SetupWindow() and sets the font
on initial startup. returns: void

 void WTGroupBox::iupdate()
 Description: Sets a new name if name has changed. returns: void

 FILES

 wtgroupb.cpp wtgroupb.hpp

- 284- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 2.5.6.13 WTListBox

NAME

 WTListBox - defines a Windows' list box used by the DUI
Windows' client.

 SYNOPSIS

 #include "WTListBox.H"

 class WTListBox: public TListBox { protected:
 w_Selection *dui_element_;
 static HFONT resource_font_;
 WTStatic *Title_;
 public:
 WTListBox(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, w_Selection *
aSibling, PTModule aModule = NULL, int multi = 0);
 ~WTListBox();
 w_Selection *dui_element() { return dui_element_; };
 TStatic *Title() { return Title_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void WMChar(RTMessage Msg) = [WM_FIRST + WM_CHAR];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 void selectitems();
 int itemisselected(int idx);
 }

 DESCRIPTION

 This class is a derivative of Borland's TListBox with DUI
functionality added. It acts as the Windows' element for the
DUI_Selection and DUI_Multi_Selection(which see) class. (See
Windui).

 MEMBER FUNCTIONS

 WTListBox::WTListBox(PTWindowsObject aParent, int aId, int
aX, int aY, int aW, int aH, w_Selection * aSibling,
PTModule aModule, int multi)
 Description: Constructor for dui TListBox control. returns:
void

 WTListBox::~WTListBox()
 Description: Destructor for dui TListBox control. returns: void

 void WTListBox::WMCommand(RTMessage Msg)
 Description: This function is called when the user selects a new

- 285- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

string in the ListBox. When this happens we want to select it in the
dui Selection object as well. For Multi_Selections it is called for
deselection as well. returns: void

 void WTListBox::WMChar(RTMessage Msg)
 Description: This function responds to the WM_CHAR message.
It intercepts 'A' or 'a' keys and selects/deselects all items in list.
returns: void

 void WTListBox::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the selection dui element. It calls TListBox::SetupWindow() first
to setup the other attributes of TListBox() it then calls DuiSetup()
to set up this instance. returns: void

 WTListBox::DuiSetup()
 Description: Sets the height, width, font and initial values of this
list box. returns: void

 void WTListBox::iupdate()
 Description: This function is called when the associated dui
element is received from the application. If the name as changed it
calls DuiSetup() otherwise it just resets the contents of the list box.
returns:
 void

 void WTListBox::selectitems()
 Description: This function sets the selected items in the Windows
list box according to those selected in the dui element. returns:
void

 int WTListBox::itemisselected(int idx)
 Description: This function determines if the indexed item is
selected in the Windows' list box. returns:
 int, TRUE if selected, FALSE otherwise.

 FILES

 wtlistbo.cpp wtlistbo.hpp

- 286- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.14 WTRadioButton

NAME

 WTRadioButton - defines a Windows' radio button used by the
DUI Windows' client.

 SYNOPSIS

 #include "WTRadioButton.H"

 class WTRadioButton : public TRadioButton { protected:
 w_Toggle * dui_element_;
 static HFONT resource_font_;
 public:
 WTRadioButton(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, LPSTR
aTitle, w_Toggle * aSibling, PTGroupBox aGroup = NULL, PTModule aModule = NULL);
 ~WTRadioButton();
 w_Toggle * dui_element() { return dui_element_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TRadioButton with DUI
functionality added. It is one of the options for representation of
the DUI_Toggle(which see) class, the other is
WTCheckBox(which see). (See Windui).

 MEMBER FUNCTIONS

 i n t a X , i n t
WTRadioButton::WTRadioButton(PTWindowsObject aParent,
int aId, int aW,int aH, LPSTR aTitle, w_Toggle *
aSibling, PTGroupBox aGroup, PTModule aModule)
Description: Constructor for the dui TRadioButton object. returns:
void

 WTRadioButton::~WTRadioButton()
 Description: Destructor for dui TRadioButton object. returns: void

 void WTRadioButton::WMCommand(RTMessage Msg)
 Description: This function is called when the user clicks this
button. The button will tell it's dui toggle sister to toggle herself.
returns: void

 void WTRadioButton::SetupWindow()
 Description: This function is called when the window receives a

- 287- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

WM_CREATE message. It is redefined here to fill in values from
the Toggle dui element. It calls TRadioButton::SetupWindow()
first to setup the other attributes of TRadioButton. It then calls
DuiSetup() to set up this instance. returns: void

 WTRadioButton::DuiSetup()
 Description: Sets the height, width, font and initial value of the
radio button. returns: void

 void WTRadioButton::iupdate()
 Description: This function is called when the associated dui
element is received from the application. If the name has changed
it calls DuiSetup() otherwise it just sets the value fo the radio
button. returns: void

 FILES

 wtradiob.cpp wtradiob.hpp

- 288- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.15 WTStatic

NAME

 WTStatic - defines a Windows' static used by the DUI Windows'
client.

 SYNOPSIS

 #include "WTStatic.H"

 class WTStatic: public TStatic { protected:
 w_Label *dui_element_;
 static HFONT resource_font_;
 Pushbutton_Bitmap *bitmap_;
 public:
 WTStatic(PTWindowsObject aParent, int aId, LPSTR aTitle, int aX, int aY, int aW, int aH,
WORD aLen, w_Label * aSibling, PTModule aModule = NULL, int is_title = 0);
 ~WTStatic();
 w_Label *dui_element() { return dui_element_; };
 virtual void SetupWindow();
 void iupdate();
 void DuiSetup();
 void SetResourceFont(HFONT newfont);
 virtual void WMShowWindow(RTMessage Msg) = [WM_FIRST + WM_SHOWWINDOW];
 virtual void WMPaint(RTMessage Msg) = [WM_FIRST + WM_PAINT];
 }

 DESCRIPTION

 This class is a derivative of Borland's TStatic with DUI
functionality added. It acts as the Windows' element for the
DUI_Label(which see) class. (See Windui).

 MEMBER FUNCTIONS

 tle, int aX, WTStatic::WTStatic(PTWindowsObject aParent, int
aId, LPSTR aTi int aY, int aW, int aH, WORD aLen, w_Label *
aSibling, PTModule aModule, int is_title)
 Description: constructor for dui TStatic control. returns: void

 WTStatic::~WTStatic()
 Description: Destructor for dui TStatic control. returns: void

 void WTStatic::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the label dui element. It calls TStatic::SetupWindow() first to setup
the other attributes of TStatic, it then resizes itself dependent on
the resources it has. returns: void

- 289- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 WTStatic::DuiSetup()
 Description: Sets height, width and font. returns:
 void

 void WTStatic::iupdate()
 Description: This function is called when the associated dui
element is received from the application. It resets the title if it is
different. returns: void

 FILES

 wtstatic.cpp wtstatic.hpp

- 290- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.16 WTText

NAME

 WTText - defines a Windows' edit used by the DUI Windows'
client.

 SYNOPSIS

 #include "WTText.H"

 class WTText: public TEdit { protected:
 w_Text *dui_element_;
 static HFONT resource_font_;
 WTStatic *Title_;
 public:
 WTText(PTWindowsObject aParent, int aId, LPSTR aContents, int aX, int aY, int aW, int aH,
w_Text * aSibling, PTModule aModule = NULL);
 ~WTText();
 w_Text *dui_element() { return dui_element_; };
 TStatic *Title() { return Title_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void WMChar(RTMessage Msg) = [WM_FIRST + WM_CHAR];
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 }

 DESCRIPTION

 This class is a derivative of Borland's TEdit with DUI
functionality added. It acts as the Windows' element for the
DUI_Text(which see) class. (See Windui).

 MEMBER FUNCTIONS

 int aX, WTText::WTText(PTWindowsObject aParent, int aId,
LPSTR aContents, int aY, int aW, int aH, w_Text * aSibling,
PTModule aModule) Description: Constructor for dui TEdit
control. returns: void

 WTText::~WTText()
 Description: Destructor for dui TEdit control. returns: void

 void WTText::WMCommand(RTMessage Msg)
 Description: ENKillFocus() This function is called when the edit
control receives an EN_KILLFOCUS message from windows. It
sets the value of the DUI_Text according to what was entered by
the user. returns: void

 void WTText::SetupWindow()

- 291- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: This function is called when the window receives a
WM_CREATE message. It is redefined here to fill in values from
the text dui element. It calls TEdit::SetupWindow() first to setup
the other attributes of TEdit(), it then fills in the value, and resizes
itself dependent on the resources it has by calling DuiSetup().
returns: void

 WTText::DuiSetup()
 Description: This function sets the height, width, font and initial
value of the edit. returns: void

 void WTText::iupdate()
 Description: This function is called when the associated dui
element is received from the application. If the name changes it
calls DuiSetup() else it just resets the contents of the edit. returns:
void

 FILES

 wttext.cpp wttext.hpp

- 292- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.17 WTWindow

NAME

 WTWindow - defines a Windows' window used by the DUI
Windows' client.

 SYNOPSIS

 #include "WTWindow.H"

 class WTWindow : public TWindow { protected:
 w_View * dui_element_;
 HFONT resource_font_;
 public:
 WTWindow(PTWindowsObject aParent, LPSTR aTitle, w_View * aSibling, PTModule
aModule = NULL);
 ~WTWindow();
 w_View * dui_element() { return dui_element_; };
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void WMSetCursor(RTMessage Msg) = [WM_FIRST + WM_SETCURSOR];
 virtual void WMShowWindow(RTMessage Msg) = [WM_FIRST +
WM_SHOWWINDOW];
 virtual void SetupWindow();
 virtual void iupdate();
 virtual void DuiSetup();
 }

 DESCRIPTION

 This class is a derivative of Borland's TWindow with DUI
functionality added. It acts as the Windows' element for the
W_View(which see) class. (See Windui).

 MEMBER FUNCTIONS

 WTWindow::WTWindow(PTWindowsObject aParent, LPSTR
aTitle, w_View * aSibling, PTModule aModule)
 Description: Constructor for the dui TWindow object. It is a
scrolling window, so the style is set and the Scroller pointer is set.
We also want keyboard handling for our views. returns: void

 WTWindow::~WTWindow()
 Description: Destructor for dui TWindow object. returns: void

 void WTWindow::WMCommand(RTMessage Msg)
 Description: This function handles all WM_COMMAND
mesages. The commands the window responds to are:
 SEND_YOURSELF - When a w_Command widget is selected the
w_View needs to send itself back to the application. This message
is sent by WTButton an interface sibling to w_Command. All other

- 293- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

messages are returned to the window that is referenced by the
message because all the other widgets respond to their own
WM_COMMAND messages. returns: void

 void WTWindow::WMSetCursor(RTMessage Msg)
 Description: This function is called when the window receives a
WM_SETCURSOR message. It calls the applictions main window
cycle_cursor function. returns: void

 void WTWindow::WMShowWindow(RTMessage Msg)
 Description: This function is called when the window receives a
WM_SHOWWINDOW message. It releases the capture of the
mouse if captured and restores the wait mode of the application
before it calls DefWndProc. returns: void

 void WTWindow::SetupWindow()
 Description: This function is called when the window receives a
WM_CREATE message. It calls SetupWindow for its base class
TWindow. returns: void

 WTWindow::DuiSetup()
 Description: This function determines the size of this window and
removes scrolling on windows that can fit on the screen. It then
moves the window to the top left corner and the appropriate size. If
the window is a dialog it centers it. returns: void

 WTWindow::iupdate()
 Description: This function is called when the associated dui
element is received from the application. It resets the title if the
name has changed and calls DuiSetup(). returns: void

 FILES

 wtwindow.cpp wtwindow.hpp

- 294- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.18 WTable

NAME

 WTable - Windows implementation of a DUI_Table.

 SYNOPSIS

 #include "WTable.H"

 class WTable: public TListBox { private:
 Table_String **column_buffers;
 RECT text_rect_;
 RECT innerframe_rect_;
 RECT outerframe_rect_;
 w_Table *dui_element_;
 static HFONT resource_font_;
 WTStatic *Title_;
 int width_unit_;
 int current_selected_idx_;
 int current_column_idx_;
 int override_selection_;
 int kill_deselect_;
 int cannot_cancel_;
 public:
 WTable(PTWindowsObject aParent, int aId, int aX, int aY, int aW, int aH, w_Table * aSibling,
PTModule aModule = NULL);
 ~WTable();
 w_Table *dui_element() { return dui_element_; };
 TStatic *Title() { return Title_; };
 virtual void SetupWindow();
 void DuiSetup();
 void iupdate();
 void set_caret(int col);
 int increment_caret(HDC hDC, int c);
 int decrement_caret(HDC hDC, int c);
 const char * save_current_row();
 int save_with_dialog();
 RECT *selected_col_text_rect();
 RECT *outerframe_rect(int col, int row, RECT *lprect = 0);
 RECT *innerframe_rect(int col, int row, RECT *lprect = 0);
 RECT *text_rect(int col, int row, RECT *lprect = 0);
 void frame_cols(DRAWITEMSTRUCT &DrawInfo, int is_selected);
 void shift_display_text(HDC hDC, int col, int row, int shift_vector = 0, int is_selected =
0);
 void reset_itemData();
 void clear_buffers();
 void reset_buffers(int idx);
 virtual void WMChar(RTMessage Msg) = [WM_FIRST + WM_CHAR];
 virtual void WMDlgCode(RTMessage Msg) = [WM_FIRST + WM_GETDLGCODE];

- 295- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 virtual void WMSetCursor(RTMessage Msg) = [WM_FIRST + WM_SETCURSOR];
 virtual void WMCommand(RTMessage Msg) = [WM_FIRST + WM_COMMAND];
 virtual void WMSetFocus(RTMessage Msg) = [WM_FIRST + WM_SETFOCUS];
 virtual void WMKillFocus(RTMessage Msg) = [WM_FIRST + WM_KILLFOCUS];
 virtual void WMKeyUp(RTMessage Msg) = [WM_FIRST + WM_KEYUP];
 virtual void WMKeyDown(RTMessage Msg) = [WM_FIRST + WM_KEYDOWN];
 virtual void WMVScroll(RTMessage Msg) = [WM_FIRST + WM_VSCROLL];
 virtual void WMLButtonDown(RTMessage Msg) = [WM_FIRST +
WM_LBUTTONDOWN];
 virtual void ODADrawEntire(DRAWITEMSTRUCT &DrawInfo);
 virtual void ODASelect(DRAWITEMSTRUCT &DrawInfo);
 virtual void ODAFocus(DRAWITEMSTRUCT &DrawInfo);
 }

 DESCRIPTION

 This class defines the Windows object that fulfills the display
behavoir for a DUI_Table(which see) widget. It is a list box with
editable columns. So an entry can be selected and then edited by
column. New rows can be inserted or deleted as well. When widget
has the focus, the active keys are:
 Mouse click - select a row. up and down arrow keys - select a row.
insert key - insert a new blank row before the current row. delete
key - delete the current row. left and right arrow keys - move left
and right one character in the currently selected column of the
current row. tab key - move to the next column in current row.
shift-tab key - move to the previous column of the current row.
backspace - delete char backwards.

 MEMBER FUNCTIONS

 WTable::WTable(PTWindowsObject aParent, int aId, int aX, int
aY, int aW, int aH, w_Table * aSibling, PTModule aModule)
Description: Constructor for dui WTable control. This control is a
listbox whose contents are editable. The listbox has the ownerdraw
style so it handles drawing the table contents as well as editing the
table contents. returns: void

 WTable::~WTable()
 Description: Destructor for WTable. It resets no_ielement and
deletes allocated memory. returns:
 void

 void WTable::WMChar(RTMessage Msg)
 Description: This function responds to a WM_CHAR message for
Windows. It intercepts characters typed and inserts them into the
current column and row, it there is one and it is not read only.
returns: void

 void WTable::WMDlgCode(RTMessage Msg)
 Description: Responds to a WM_DLGCODE message, setting the

- 296- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

kind of keyboard input that we want. returns: void

 void WTable::WMCommand(RTMessage Msg)
 Description: Responds to WM_COMMAND message with a
parameter of CAPTURE_THE_FOCUS. Whereupon it sets the
focus to the current window. It will receive this messge from
WMKillFocus() if there was an error in the last entered text.
returns: void

 void WTable::WMKeyUp(RTMessage Msg)
 Description: Responds to a WM_KEYUP message and does
nothing. returns: void

 void WTable::WMKeyDown(RTMessage Msg)
 Description: Responds to a WM_KEYDOWN message, and traps
some special keys to do special processing:
 DELETE - delete current row and select next row; ESCAPE - if in
the middle of editing? put back old contents of row but leave row
selected. INSERT - add new row above current row and select.
RIGHT-ARROW - goto next letter in current column stopping at
last letter LEFT-ARROW - goto previous letter in current column
stopping at first letter TAB - goto next column if last column call
default. SHIFT-TAB - goto previous column if first column call
default. BACKSPACE - delete char back- wards. returns: void

 void WTable::WMVScroll(RTMessage Msg)
 Description: Responds to WM_VSCROLL message. It checks to
make sure caret is visible if it should be and hidden if it should be.
returns: void

 void WTable::WMLButtonDown(RTMessage Msg)
 Description: Responds to WM_LBUTTONDOWN message.
Selects appropriate row. returns: void

 void WTable::WMSetFocus(RTMessage Msg)
 Description: Responds to WM_SETFOCUS message by creating
the caret. returns: void

 void WTable::WMKillFocus(RTMessage Msg)
 Description: Responds to WM_KILLFOCUS by checking the
validity of the last entered text and destroying the caret. returns:
void

 void WTable::WMSetCursor(RTMessage Msg)
 Description: If the cursor is on the currently selected items set it to
I-beam cursor. Responds to WM_SETCURSOR message. returns:
void

 void WTable::SetupWindow()
 Description: This function is called when the window receives a

- 297- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

WM_CREATE message. It is redefined here to fill in values from
the selection dui element. It calls TListBox::SetupWindow() first
to setup the other attributes of TListBox(), then it calls
DUISetup(). returns: void

 WTable::DuiSetup()
 Description: This function is called when a window's element is
first created and when the name of the widget changes. It reads
resources establishing the width, height and font of the new or
changed widget. It also resets the rows in the window's element
and creates new edit buffers for each column. returns:
 void

 void WTable::iupdate()
 Description: This function is called when an update to this widget
is sent from the application. It determines if the name of the widget
has changed and calls DuiSetup() if it has(because it can not be
sure that widget will remain the same size), otherwise it just resets
the rows displayed in the windows' element. returns: void

 v o i d W T a b l e : : O D A D r a w E n t i r e (D R A W I T E M S T R U C
&DrawInfo)
 Description: This function responds to a WM_DRAWITEM
message whereupon it draws the framing around the columns and
row highliting the row if it is selected. The message is sent for each
item in the list box. returns: void

 void WTable::ODASelect(DRAWITEMSTRUCT &DrawInfo)
 Description: This function is called when an item in the list box
has changed its selection status (selected or deselected). When an
item is selected the contents of the previously selected row is
saved, and if the save failed that row is selected again nullifying
the current selection activity, otherwise it proceeds. If the row has
been deselected it proceeds as well. In both cases the item is
redrawn reflecting its new selection status. returns: void

 void WTable::ODAFocus(DRAWITEMSTRUCT &DrawInfo)
 Description: This function is called for each item when the focus
is set on the WTable object. It calls the ODAFocus() of its parent
class TListBox. returns: void

 is_selected)
 void WTable::frame_cols(DRAWITEMSTRUCT &DrawInfo,
int Description: This function actually does the drawing of the
borders for each column in the desired rows as well as displays the
text that that row contains by calling shift_display_text(). It does
selection drawing if the item is selected. returns: void

 RECT * WTable::selected_col_text_rect()
 Description: This function returns the RECT structure wich

- 298- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

describes the rectangle which encloses the selected text. returns:
RECT *, the selected text RECT structure.

 RECT * WTable::text_rect(int col, int row, RECT *lprect)
 Description: This function returns the RECT structure that
describes the rectangle enclosing the text of the passed column and
row. returns: RECT *, the text rectangle.

 RECT * WTable::innerframe_rect(int col, int row, RECT *lprect)
 Description: This function returns the RECT structure that
encloses the innerframe of the passed column and row. returns:
RECT *, the innerframe of the column.

 RECT * WTable::outerframe_rect(int col, int row, RECT *lprect)
 Description: This function returns the RECT structure that
encloses the outer frame of the passed column and row. If the
lprect arg is 0, the rectangle is retrieved through Windows'. returns:
RECT *, the outer frame of the column.

 shift_vector, void WTable::shift_display_text(HDC hDC, int col,
int row, int int is_selected) Description: This function
displays the text for desired row and column. If the column is in
the selected row, the text may have been shifted by cursor
movement and editing so the shift vector is used to display as
much of the string as is currently visible. returns: void

 void WTable::set_caret(int col)
 Description: This function sets the caret(the blinking edit cursor)
to the beginning of the desired row and resets the shifted buffer to
the beginning. returns:
 void

 int WTable::increment_caret(HDC hDC, int c)
 Description: This function moves the caret to the right by the
width of the passed character in the current font. returns: int, -1 if
at end of string, 0 if at end of rectangle, 1 otherwise.

 int WTable::decrement_caret(HDC hDC, int c)
 Description: This function moves the caret to the left by the width
of the passed character in the current font. Stopping at the borders
of the rectangle. returns: int, -1 if at beginning of string, 0 if at
beginning of rectangle, 1 otherwise.

 void WTable::reset_itemData()
 Description: This function resets the data attached to the list box
items to be in sync with the contents of the DUI Widget. returns:
void

 const char * WTable::save_current_row()
 Description: This function saves the data entered by the user into

- 299- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

the DUI Widget and checks to make sure there were no errors.
returns: char *, the error message if error, else 0.

 int WTable::save_with_dialog()
 Description: This function calls save_current_row() and if there
were errors pops up a message box relaying the error message.
returns: int, 1 if error, 0 otherwise.

 void WTable::clear_buffers()
 Description: Sets contents of the edit buffers used to capture user
data to "". returns: void

 Description:
 sets buffers back to their original contents from the DUI Widget.
returns: void

 FILES

 wtable.cpp wtable.hpp

- 300- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.19 w_Command

NAME

 w_Command - Windui extensions to DUI_Command.

 SYNOPSIS

 #include "w_Command.H"

 protected:
 class WTButton * interface_element_;
 class WTGroupBox * group_box_;
 w_Component ** old_components_;
 int old_component_count_;
 public:
 WTButton * interface_element() { return interface_element_; };
 virtual int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual boolean read_only() const { return w_Component::read_only(); };
 virtual void client_construct();
 virtual void client_destruct();
 virtual void hide_unused_components();
 virtual void store_components();
 const char * check_view_invalid();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void no_group() { group_box_ = 0; };
 void hide_component();
 void show_component();
 void make_window();
 void hide_old();
 virtual void set_hide_show(int hsarg = -1);
 void really_show();
 void really_show_old();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Command(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTButton(which see) which actually defines the
Windows element.

 MEMBER FUNCTIONS

- 301- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int w_Command::icreate(w_View *aParent)
 Description: This function is called to update an existing
command if it has changed. It, in turn, will run through it's list of
commands and call their icreate function if necessary. It will also
create a new command if this one has not been created yet. returns:
int, 0 always.

 void w_Command::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 void w_Command::really_show_old()
 Description: This function is necessary for objects that act as
groups for other objects. w_Command can have subcommands so
it keeps track of its previous set of subcommands so that they can
be hidden if no longer a part of this group. Conflicts arising from a
component simply switching groups is resolved by using the
hide_show_ flag which can not be set to hidden once it has been
set to shown. returns: void

 int w_Command::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It operates in two
ways, if this is non-group command it just positions its windows
element, else it positions a group box surrounding the
subcommands and calls reposition on the subcommands after
adjusting the coordinates for spacing. returns: int, 1 always

 int w_Command::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Command::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Command::client_construct()
 Description: This is an addition to the constructor for
DUI_Command. It initializes the data members added in these
extensions. returns: void

- 302- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 w_Command::client_destruct()
 Description: Destructor for client additions. returns:
 void

 w_Command::check_view_invalid()
 Description: This function calls check_invalid() for its view's
component. Used because the command needs to do it when it is
pressed. returns: char *, the error message or 0.

 void w_Command::store_components()
 Description: This function saves the old component list and count.
returns: void

 void w_Command::set_hide_show(int hsarg)
 Description: Sets the hide_show_ flag for this command and all
subcommands. returns: void

 void w_Command::hide_old()
 Description: Sets the hide_show_ flag to hide for all the old
components. returns: void

 void w_Command::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_ and receive() on all of its subcommands.
returns: void

 FILES

 w_comman.cc w_comman.hh

- 303- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.20 w_Component

NAME

 w_Component - Windui extensions to DUI_Component.

 SYNOPSIS

 #include "w_Component.H"

 private:
 protected:
 int hide_show_;
 public:
 virtual void client_construct();
 virtual void client_destruct() { return; };
 virtual void hide_unused_components() { return; }
 virtual void store_components() { return; }
 virtual void hide_component() { return; }
 virtual void show_component() { return; }
 virtual void make_window() { return; }
 virtual void hide_old() { hide_show_ = 0; }
 virtual void really_show() { return; };
 virtual void really_show_old() { really_show(); };
 virtual void set_hide_show(int hsarg = -1) { if (hide_show_ == -1 || hsarg == -1) { hide_show_
= hsarg;
 } else if (hide_show_ == 0) { hide_show_ = hsarg;
 }
 }

 DESCRIPTION

 These methods are extensions to the DUI_Component(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client.

 MEMBER FUNCTIONS

 w_Component::client_construct()
 Description: Constructor additions for the Windows client.
returns: void

 FILES

 w_compon.cc w_compon.hh

- 304- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.21 w_End_Component

NAME

 w_End_Command - Windui extensions to DUI_End_Command.

 SYNOPSIS

 #include "w_End_Command.H"

 public:
 virtual int icreate(w_View *aParent);
 virtual int iupdate();
 DESCRIPTION

 These methods are extensions to the DUI_End_Command(which
see) class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTButton(which see)
 which actually defines the Windows element. This it inherited
from DUI_Command of which it is a derivative.

 MEMBER FUNCTIONS

 int w_End_Command::icreate(w_View *aParent)
 Description: This function calls w_Command::icreate()
 and sets the end_view_ flag to one on its interface_element_.
returns: int, 1 always.

 int w_End_Command::iupdate()
 Description: Calls interface_element_->iupdate(). returns: void

 FILES

 w_end_co.cc w_end_co.hh

- 305- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.22 w_Field

NAME

 w_Field - Windui extensions to DUI_Field.

 SYNOPSIS

 #include "w_Field.H"

 /* w_field.HH * Contains definitions specific to w_field as
modifications for duit * sister class DUI_field. * Kevin Convy 12/16/92
*/

 protected:
 class WTEdit * interface_element_;
 public:
 WTEdit * interface_element() { return interface_element_; };
 int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void hide_component() ;
 void show_component() ;
 void make_window();
 void really_show();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Field(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTEdit(which see) which actually defines the
Windows element.

 MEMBER FUNCTIONS

 int w_Field::icreate(w_View *aParent)
 Description: This function is called to update an existing field if it
has changed. It will also create a new command if this one has not
been created yet. returns: void

 void w_Field::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed

- 306- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Field::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Field::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Field::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Field::client_construct()
 Description: This is an addition to the constructor for
DUI_Command. It initializes the data members added in these
extensions. returns: void

 void w_Field::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_field.cc w_field.hh

- 307- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.23 w_Group

NAME

 w_Group - Windui extensions to DUI_Group.

 SYNOPSIS

 #include "w_Group.H"

 w_Group.HH Contains definitions specific to w_Group as modifications
for duit sister class DUI_Group.

 protected:
 class WTGroupBox * interface_element_;
 w_Component ** old_components_;
 int old_component_count_;
 public:
 WTGroupBox * interface_element() { return interface_element_;
};
 int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 virtual void client_destruct();
 virtual void hide_unused_components();
 virtual void store_components();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void hide_component();
 void show_component();
 void make_window();
 virtual void set_hide_show(int hsarg = -1);
 void hide_old();
 void really_show();
 void really_show_old();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Group(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTGroupBox(which see)
 which actually defines the Windows element.

 MEMBER FUNCTIONS

- 308- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int w_Group::icreate(w_View *aParent)
 Description: This function is called to update an existing group if
it has changed. It, in turn, will run through it's list of components
and call their icreate function if necessary. It will also create a new
group if this one has not been created yet. returns: void

 int w_Group::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position its list of components and then itself. returns: int, 1 always

 int w_Group::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Group::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Group::client_construct()
 Description: This is an addition to the constructor for
DUI_Command. It initializes the data members added in these
extensions. returns: void

 w_Group::client_destruct()
 Description: Destructor additions for this object. returns: void

 void w_Group::store_components()
 Description: This function saves the old component list and count.
returns: void

 void w_Group::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 void w_Group::really_show_old()
 Description: This function is necessary for objects that act as
groups for other objects. w_Group has a list of components so it
must track of its previous set of components so that they can be
hidden if no longer a part of this group. Conflicts arising from a
component simply switching groups is resolved by using the

- 309- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

hide_show_ flag which can not be set to hidden once it has been
set to shown. returns: void

 void w_Group::set_hide_show(int hsarg)
 Description: Sets the hide_show_ flag for this group and all of its
components. returns: void

 void w_Group::hide_old()
 Description: Sets the hide_show_ flag to hide for all the old
components. returns: void

 void w_Group::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_group.cc w_group.hh

- 310- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.24 w_Label

NAME

 w_Label - Windui extensions to DUI_Label.

 SYNOPSIS

 #include "w_Label.H"

 w_Label.HH Contains definitions specific to w_Label as modifications
for duit sister class DUI_label.

 protected:
 class WTStatic * interface_element_;
 public:
 WTStatic * interface_element() { return interface_element_; };
 int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void hide_component() ;
 void show_component() ;
 void make_window();
 void really_show();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Label(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTStatic(which see) which actually defines the
Windows element.

 MEMBER FUNCTIONS

 int w_Label::icreate(w_View *aParent)
 Description: This function is called to update an existing label if it
has changed. It will also create a new label if this one has not been
created yet. returns: void

 void w_Label::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's

- 311- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Label::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Label::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Label::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Label::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 void w_Label::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_label.cc w_label.hh

- 312- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.25 w_Selection

NAME

 w_Selection - Windui extensions to DUI_Selection.

 SYNOPSIS

 #include "w_Selection.H"

 w_Selection.HH Contains definitions specific to w_Selection as
modifications for duit

 protected:
 int isCombo ;
 class TListBox * interface_element_;
 public:
 TListBox * interface_element() { return interface_element_; };
 virtual int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 virtual void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 virtual void hide_component() ;
 virtual void show_component() ;
 virtual void make_window();
 virtual void really_show();

 virtual void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Selection(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTListBox(which see) which actually defines
the Windows element.

 MEMBER FUNCTIONS

 int w_Selection::icreate(w_View *aParent)
 Description: This function is called to update an existing object if
it has changed. It will also create a new object if this one has not
been created yet. returns: void

 void w_Selection::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed

- 313- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Selection::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Selection::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Selection::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Selection::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 void w_Selection::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_select.cc w_select.hh

- 314- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.26 w_Table

NAME

 w_Table - Windui extensions to DUI_Table.

 SYNOPSIS

 #include "w_Table.H"

 /* w_Table.HH * Contains definitions specific to w_Table as
modifications for duit * sister class DUI_Table. * Kevin Convy 12/29/92
*/

 protected:
 friend class WTable;
 class WTable * interface_element_;
 int *column_widths;
 int row_width_;
 STRING *title_string_;
 public:
 int column_width(int col);
 int row_width() { return row_width_; };
 WTable * interface_element() { return interface_element_; };
 virtual int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 char * column_title_string();
 virtual void client_construct();
 virtual void client_destruct();
 virtual void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 virtual void hide_component() ;
 virtual void show_component() ;
 virtual void make_window();
 virtual void really_show();
 virtual void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Table(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTable(which see) which actually defines the
Windows element.

 MEMBER FUNCTIONS

- 315- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 int w_Table::icreate(w_View *aParent)
 Description: This function is called to update an existing object if
it has changed. It will also create a new object if this one has not
been created yet. returns: void

 void w_Table::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Table::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Table::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Table::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Table::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 w_Table::client_destruct()
 Description: Destructor additions for this class. returns: void

 void w_Table::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 int w_Table::column_width(int col)
 Description: Accesser function. returns: int, width of desired
column.

 char *w_Table::column_title_string()
 Description: Creates a title string from all the names of the

- 316- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

columns plus padding(with spaces) for names that are shorter than
their column's width. returns: char *, title string.

 FILES

 w_table.cc w_table.hh

- 317- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.27 w_Text

NAME

 w_Text - Windui extensions to DUI_Text.

 SYNOPSIS

 #include "w_Text.H"

 w_Text.HH Contains definitions specific to w_Text as modifications for
duit sister class DUI_Text.

 protected:
 class WTText * interface_element_;
 public:
 WTText * interface_element() { return interface_element_; };
 int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void hide_component() ;
 void show_component() ;
 void make_window();
 void really_show();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Text(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTText(which see) which actually defines the
Windows element.

 MEMBER FUNCTIONS

 void w_Text::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components

- 318- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Text::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Text::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Text::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Text::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 void w_Text::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_text.cc w_text.hh

- 319- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.28 w_Toggle

NAME

 w_Toggle - Windui extensions to DUI_Toggle.

 SYNOPSIS

 #include "w_Toggle.H"

 /* w_Toggle.HH Contains definitions specific to w_Toggle as
modifications for duit sister class DUI_toggle.

 protected:
 class TButton * interface_element_;
 int isRadio_;
 public:
 TButton * interface_element() { return interface_element_; };
 int icreate(w_View *aParent);
 virtual int reposition(int X, int Y);
 virtual int resize(int W, int H);
 virtual int isize(int *W, int *H);
 virtual void client_construct();
 void no_ielement() { interface_element_ = 0;
 hidden_or_shown_ = 0;};
 void hide_component() ;
 void show_component() ;
 void make_window();
 void really_show();
 void iupdate();
 void receive();

 DESCRIPTION

 These methods are extensions to the DUI_Toggle(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTCheckbox(which see)
 which actually defines the Windows element.

 MEMBER FUNCTIONS

 int w_Toggle::icreate(w_View *aParent)
 Description: This function is called to update an existing object if
it has changed. It will also create a new object if this one has not
been created yet. returns: void

 void w_Toggle::iupdate()
 Description: This function calls iupdate on its interface_element_.

- 320- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

returns: void

 void w_Toggle::really_show()
 Description: This function checks hide_show_ and
hidden_or_shown_ to see if element must be explicitly displayed
or hidden. This function is called on a final pass through a view's
instance hierarchy to display or hide the actual elements. The
hide_show_ flag is set when elements are created or updated. This
is done so the view's components can change dynamically. The
components always exist once created but may be removed or
added to a view at any time during execution therefore components
which are no longer part of a view are hidden instead of removed.
Components can not be part of two different views at once.
Although this is desirable. returns: void

 int w_Toggle::reposition(int X, int Y)
 Description: This function allows another object to ask this object
to reposition itself given the passed coordinates. It adjusts the
position of its title member and then of its windows element
member. returns: int, 1 always

 int w_Toggle::resize(int W, int H)
 Description: This function allows for resizing of the object.
returns: int, 1 always.

 int w_Toggle::isize(int *W, int *H)
 Description: This function returns its width and height into the
arguments passed. returns: int, 1 always.

 w_Toggle::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 void w_Toggle::receive()
 Description: This function is called whenever this object is
received from the application. It calls iupdate() on its
interface_element_. returns: void

 FILES

 w_toggle.cc w_toggle.hh

- 321- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.29 w_View

NAME

 w_View - Windui extensions to DUI_View.

 SYNOPSIS

 #include "w_View.H"

 w_View.HH Contains definitions specific to w_View as modifications for
duit sister class DUI_View.

 protected:
 class WTWindow * interface_element_;
 w_Component *old_component_;
 w_Command *old_command_;
 public:
 WTWindow * interface_element() { return interface_element_; } ;
 virtual int icreate();
 void no_ielement() { interface_element_ = 0; };
 virtual void client_construct();
 void really_show();

 DESCRIPTION

 These methods are extensions to the DUI_View(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client (e.g. functions
dealing directly with display of this object). It has a pointer to an
associated object WTWindow(which see) which actually defines
the Windows element.

 MEMBER FUNCTIONS

 int w_View::icreate()
 Description: This function either creates the window as necessary
or updates it. In either case it calls the icreate funtion for its
children. returns: int, 1 always.

 void w_View::really_show()
 Description: This function calls really_show on the old and the
new components to do the actual Windows showing of the
interface_elements_ dependent on the hide_show_ flag. The
hide_show_ flag is used because it might be the case that some
widget has only changed its parent and would therefore be hidden
for one parent and visible for another. This conflict is resolved by
having the hide_show_ flag hold the desired attribute. returns: void

 void w_View::receive()

- 322- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Receive fucntion for w_View. This function is called
when the view is received from the application it is also called by
w_Form::recieve(). returns:
 void

 w_View::client_construct()
 Description: This is an addition to the constructor. It initializes the
data members added in these extensions. returns: void

 FILES

 w_view.cc w_view.hh

- 323- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.30 w_Widget

NAME

 w_Widget - Windui extensions to DUI_Widget.

 SYNOPSIS

 #include "w_Widget.H"

 protected:
 int hidden_or_shown_;
 char *logical_name_;
 friend class WTWindow;
 private:
 static int dictionary_read_;
 static class Dictionary *resource_dictionary_;
 static struct stat current_file_stat_;
 w_Widget * client_parent_;
 private:
 char *view_name();
 public:
 int read_resources();
 int layout_;
 int re_size_;
 public:
 char *absolute_resource_path();
 char *relative_resource_path();
 char *class_resource_path();
 char *view_class_resource_path();
 char *view_name_resource_path();
 char *retrieve_named_resource(char *resource_name);
 void client_parent(w_Widget *parent) { client_parent_ = parent; };
 w_Widget * client_parent() { return client_parent_; };
 void set_hidden_or_shown(int setting = 0) { hidden_or_shown_ = setting; };
 virtual int reposition(int X, int Y) { return -1; };
 virtual int resize(int W, int H) { return -1; };
 virtual int isize(int *W, int *H) { return -1; };
 virtual void setresized(int val) { if (client_parent_) { client_parent_->setresized(val);
 }
 re_size_ = val;
 };
 virtual int isresized() { return re_size_; };
 virtual int icreate(class w_View *aParent) { return -1;
 };
 virtual int idestroy() { return -1; };
 virtual int iupdate(w_View *aParent) { return -1; };
 Windui(5) Last change: Wed Jan 5 17:53:10 1994 1

 w_Widget(5) Gatec Manual w_Widget(5)

- 324- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void layout(int direction) { layout_ = direction; };
 int layout() { return layout_; };
 int Rbackground(int *R, int *G, int *B);
 int Rforeground(int *R, int *G, int *B);
 char *Rname();
 char *Ricon();
 char *Rtitleposition();
 char *Rfontname();
 int Rfontheight();
 int Rfontfixed();
 int Rfontunderline();
 int Rfontitalic();
 int Rfontweight();
 char *Rrepresentation();
 char *Rlayout();
 int Rdimensions(int *X, int *Y);
 int Rexplicitdimensions(int **Xarray);
 int Rcolumnwidths(int **Warray);
 int Rhorizontalspacing();
 int Rverticalspacing();
 char *Ralignment();
 int Rlength();
 int Rwidth();
 int Rheight();
 int Ritemsshown();
 char *Rdefaultvalue();
 char *Rdoubleclick();
 char *Rbitmap();
 int Rwait();
 int Rwaitedfor();
 char *logical_name();
 char *retrieve_value(char *resource_path);

 DESCRIPTION

 These methods are extensions to the DUI_Widget(which see)
 class defined in the DUI Toolkit. They provide additional
functionality required by the Windows DUI client. The primary
purpose of these extensions is to provide access to DUI resources
for all widgets. (see DUI).

 MEMBER FUNCTIONS

 w_Widget::read_resources()
 Description: This function reads the resource file and stores the
paths and values as Local_Atoms in the w_Widget's resource
dictionary. The resource file is expected to be named "wres.res" in
the current directory. returns: int, 1 if success, -1 if failure.

 char *w_Widget::retrieve_value(char *resource_path)

- 325- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: This function retrieves the value for a given resource
path. returns: char *, value or NULL.

 char *w_Widget::absolute_resource_path()
 Description: This function builds an absolute path to this
particular widget requesting an absolute path of it's parent which
dominoes through the parent list. Absolute paths are of the form:
<widget name | widget class name>[. <widget name | widget class
name>]... An example path is: Make Award.first group.second
group.Award number Paths are treated as caseinsensitive strings.
This path overrides the relative path, and class path if any. returns:
char *, the path.

 char *w_Widget::relative_resource_path()
 Description: This function builds a relative path of the form:
*<widget name> Example: *Award number This path overrides
the class path if any. returns: char *, the path.

 char *w_Widget::class_resource_path()
 Description: This function builds a class name path. Resource
paths specifying entire classes are permitted. In this case they are
applyed to any widget belonging to that class, if their are no
relative or absolute paths applying. returns: char *,the path.

 char *w_Widget::view_name_resource_path()
 Description: This function builds a view plus widget- name path:
<view name>*<widget name> returns: char *, the path.

 char *w_Widget::view_class_resource_path()
 Description: This function builds a view plus classname path:
<view name>*<classname> returns: char *, the path.

 char *w_Widget::view_name()
 Description: This function retrieves the view name for this widget.
returns: char *, the view name.

 int w_Widget::Rbackground(int *R, int *G, int *B)
 Description: Access function for "background" resource. returns:
int 1 if there was a resource, 0 otherwise.

 int w_Widget::Rforeground(int *R, int *G, int *B)
 Description: Access function for "foreground" resource. returns:
int 1 if there is a resource, 0 otherwise.

 char *w_Widget::Rname()
 Description: Access function for "name" resource. returns: char *,
the value or NULL.

 char *w_Widget::Rdefaultvalue()
 Description: Access function for "defaultvalue" resource. returns:

- 326- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

char *, the value or NULL.

 char *w_Widget::Rdoubleclick()
 Description: Access function for "doubleclick" resource. returns:
char *, the value or NULL.

 int w_Widget::Rwait()
 Description: Access function for "wait" resource. returns: true or
false(1 or 0).

 int w_Widget::Rwaitedfor()
 Description: Access function for "waitedfor" resource. returns: 1 if
true, 0 if false.

 char *w_Widget::Rbitmap()
 Description: Access function for "bitmap" resource. returns: char
*, the value or NULL.

 char *w_Widget::Ricon()
 Description: Access function for "icon" resource. returns: char *,
the value or NULL.

 char *w_Widget::Rtitleposition()
 Description: Access function for "titleposition" resource. returns:
char *, the value or NULL.

 char *w_Widget::Rfontname()
 Description: Access function for "fontname" resource. returns:
char *, the value or NULL.

 int w_Widget::Rfontheight()
 Description: Access function for "fontheight" resource. returns:
int, the height, or 10.

 int w_Widget::Rfontweight()
 Description: Access function for "fontweight" resource. returns:
int, the value / 100 * 100 % 1000.

 int w_Widget::Rfontfixed()
 Description: Access function for "fontfixed" resource. returns: int
1 for true, 0 for false.

 int w_Widget::Rfontunderline()
 Description: Access function for "fontunderline" resource. returns:
int 1 for true, 0 for false.

 int w_Widget::Rfontitalic()
 Description: Access function for "fontitalic" resource. returns: int
1 for true 0 for false.

- 327- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 char *w_Widget::Rrepresentation()
 Description: Access function for "representation" resource.
returns: char *, the value or NULL.

 char *w_Widget::Rlayout()
 Description: Access function for "layout" resource. returns: char *,
the value or NULL.

 int w_Widget::Rdimensions(int *X, int *Y)
 Description: Access function for "dimensions" resource. returns:
int, 1 if value exists, 0 otherwise.

 int w_Widget::Rexplicitdimensions(int **Xarray)
 Description: Access function for "explicitdimensions" resource.
returns: int 1 if there is a value, 0 otherwise.

 int w_Widget::Rcolumnwidths(int **Warray)
 Description: Access function for "columnwidths" resource.
returns: int 1 if there is a value, 0 otherwise.

 int w_Widget::Rhorizontalspacing()
 Description: Access function for "horizontalspacing" resource.
returns: int, the value.

 int w_Widget::Rverticalspacing()
 Description: Access function for "verticalspacing" resource.
returns: int, the value.

 char *w_Widget::Ralignment()
 Description: Access function for "alignment" resource. returns:
char *, the value or NULL.

 int w_Widget::Rlength()
 Description: Access function for "length" resource. returns: int,
the value.

 int w_Widget::Rwidth()
 Description: Access function for "width" resource. returns: int, the
value.

 int w_Widget::Rheight()
 Description: Access function for "height" resource. returns: int,
the value.

 int w_Widget::Ritemsshown()
 Description: Access function for "itemsshown" resource. returns:
int, the value.

 char *w_Widget::retrieve_named_resource(char *resource_name)
 Description: This function performs the path search operations

- 328- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

needed by the resource accessor functions. returns: char *, the
value of the named resource or NULL.

 char *w_Widget::logical_name()
 Description: function to return the name of the widget. The name
can either be its supplied name or the resource replacement for
supplied name. returns: char *, the name.

 FILES

 w_widget.cc w_widget.hh -

- 329- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.31 Session

NAME

Session - windui Session class.

 SYNOPSIS

 #include "Session.H"

 class Session { protected:
 Session(char *progname);
 ~Session();
 int status;
 int running;
 istream* inchannel;
 ostream* outchannel;
 AppControl* thisapp;
 ConfigInfo* configuration;
 ofstream* log_;
 static Session *instance();
 static Session *instance_;
 public:
 static void send(Communication_Object*);
 static void run();
 static void poll();
 static int inerror();
 static int end();
 static ofstream& log();
 static void warning(const char *c);
 static void debug(const char *c);
 static void dodisconnect();
 };
 /* * Client_Session class definition. * */

 class Client_Session: public Session { private:
 Client_Session(char *progname): Session(progname) {};
 ~Client_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 };
 /* * Server_Session class definition. * */

 class Server_Session: public Session { private:
 Server_Session(char *progname): Session(progname) {};
 ~Server_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 };
 /* * Application_Session class definition. * */

- 330- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 class Application_Session: public Session { private:
 Application_Session(char *progname): Session(progname)
 {};
 ~Application_Session() {};
 public:
 static int begin(char *appname, void (*efp)()=0);
 }
 DESCRIPTION

 This class contains much of the code in the DUI Session(1)
 class, but has been modified to support serial communcations
under the MS Windows 3.1 environment.

 MEMBER FUNCTIONS

 inline Session *Session::instance()
 Description: Accessor function for the one instance of Session.
returns: Session *, the instance.

 Session::Session(char *appname)
 Description: Constructor accepting the remote application name as
argument. returns: void

 void Session::send(Communication_Object* cobject)
 Description: Function that sends a Communication object through
the output channel. returns: void

 Session::~Session()
 Description: Destructor for Session. Deletes channels, application
name, and configuration info. returns:
 void

 int Session::end()
 Description: This member is a modified version of the Session(1)
member. It runs the disconnect script "discon.scr" and terminates.
returns: int -1 for error if it returns at all.

 void Session::dodisconnect()
 Description: This member does not appear in the Session(1) class.
It just runs the "discon.scr" script and returns. returns: void

 int Session::inerror()
 Description: Status function. returns: int 1 if error, 0 otherwise.

 void Session::run()
 Description: This member is a modified version of the Session(1)
member. It just calls Session::poll()
 because there is already an event loop in Windows and there
would be a conflict if Session went into an endless loop waiting on

- 331- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

the application. returns: void

 void Session::poll()
 Description: This is a new member function. It checks the next
character on port and if it is a "(", it sets blocking mode and reads
in the object, otherwise it returns. It also sends a neutral
AppControl object every 10000 times it is called for channels that
need activity in order to stay live. returns: void

 ofstream& Session::log()
 Description: Accessor function. returns: ofstream&, a log file
stream.

 void Session::warning(const char *c)
 Description: Writes message to log. returns: void

 void Session::debug(const char *c)
 Description: Writes message to log. returns: void

 int Client_Session::begin(char *appname, void (*efp)
 Description: This member has been modified to support serial
communications. returns: void.

 FILES

 session.c session.h

- 332- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

2.5.6.32 SerialBuf

NAME

 SerialBuf - streambuf derivative for a Windows serial port.

 SYNOPSIS

 #include "SerialBuf.H"

 class SerialBuf: public ChannelBuf { public:
 SerialBuf();
 virtual ~SerialBuf();
 virtual int connect(ConfigInfo *config);
 virtual int reconfigure(ConfigInfo *config);
 virtual int reconfigure(const DCB*);
 virtual COMSTAT *getlasterror();
 int blocking();
 int blocking(int);
 protected:
 private:
 char *port();
 int fd();
 int opened();
 SerialBuf *verbose(int);
 virtual int disconnect();
 virtual int overflow(int c = EOF);
 virtual int underflow();
 virtual int sync();
 virtual int doallocate();
 void error(const char *);
 void sys_error(const int);
 char *_port;
 int _fd;
 int _opened;
 int _close;
 int _blocking;
 int _verbose;
 COMSTAT error_status;
 }
 DESCRIPTION

 This class implements a streambuf for a serial comm port under
the windows operating system.

 MEMBER FUNCTIONS

 int SerialBuf::connect(ConfigInfo *config)
 Description: This function retrieves the serial configuration
information from the passed ConfigInfo object and opens the

- 333- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

comm port. returns: int 1 if success, -1 if error.

 int SerialBuf::reconfigure(ConfigInfo *config)
 Description: This function reconfigures the serial line based upon
the passed ConfigInfo object. returns: int 0 if successful, -1 if
failure.

 int SerialBuf::reconfigure(const DCB *newdcb)
 Description: This allows reconfiguring using a DCB structure.
returns: void

 COMSTAT *SerialBuf::getlasterror()
 Description: This function clears the last communications error
state and reports on the following error or status states:
CE_OVERRUN, CE_TXFULL, CSTF_XOFFHOLD,
CSTF_XOFFSENT returns: COMSTAT *, the error status
returned.

 int SerialBuf::disconnect()
 Description: Flushes the port and closes it. returns:
 void

 SerialBuf *SerialBuf::verbose(int verbose)
 Description: Sets verbose error reporting. returns:
 void

 SerialBuf::SerialBuf()
 Description: Empty constructor. returns: void

 int SerialBuf::fd()
 Description: Accessor function. returns: int, the file descriptor.

 int SerialBuf::blocking()
 Description: Accessor function. returns: int, the blocking state.

 int SerialBuf::blocking(int ablocking)
 Description: Sets the blocking state. returns: int, the new blocking
state.

 int SerialBuf::opened()
 Description: Accessor function. returns: int, the open status.

 char *SerialBuf::port()
 Description: Accessor function. returns: char *, the name of the
port.

 void SerialBuf::error(const char *msg)
 Description: output error message "msg". returns: void

 void SerialBuf::sys_error(const int retcode)

- 334- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Description: Output string description of system error with code
"retcode". returns: void

 SerialBuf::~SerialBuf()
 Description: Destructor, calls disconnect and deallocates memory.
returns: void

 int SerialBuf::doallocate()
 Description: Allocates io buffers. returns: void

 int SerialBuf::overflow(int c)
 Description: Write put buffer to serial port. returns:
 int, number of chars written.

 int SerialBuf::sync()
 Description: Calls underflow() and overflow(). returns: int, return
value of overflow() (number of chars written).

 int SerialBuf::underflow()
 Description: Reads from serial port. If blocking is set calls
Communications_Script on script file "pause.scr" which it expects
to find in the current directory 5 times attempting a read between
each retry if still nothing on the port after 5 times it returns EOF,
otherwise if there is something on the port reads as much as it can
and returns next character in the get buffer. returns: int, next
character in the get buffer.

 FILES

 serialbu.c serialbu.h

- 335- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 3 The GATEC Database Software

The software that comprises the establishment and access to the
GATEC 2 database is located at $CVSROOT/narqdb in the
GATEC development environment.

The second and third sections of this database software description
deal with NORA and NARQ libraries, respectively. Those sections
concentrate on the content and intended use of each of the given
libraries. The fourth section describes the files in the development
environment and instructions for constructing the libraries. The
fifth section contains a few sample applications showing how
NARQ and NORA can be used in a C++ application.

3.0.1 NARQ & NORA

NARQ is an acronym for the most commonly used objects in the
GATEC procurement process; Notes, Acquisitions, Requests for
quote, and Quotes. Specifically, it is one of two libraries that is
available to C++ programmers that allows access to database
records. The NARQ library consists entirely of compiled C++
object code originally generated from descriptions of the GATEC
database objects.

NORA is an abbreviation of NARQ Oracle. It is the second of two
libraries used to access an Oracle database. However, unlike the
NARQ library, the NORA library contains no GATEC-specific
information. It represents a logical separation of the application-
specific objects from the Oracle-specific objects. It primarily
contains object code providing functionality analogous to SQL
statements.

The combination of the NARQ and NORA libraries provides the
ability to query and update a GATEC database without the need for
writing a single line of SQL code.

- 336- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1 NORA Principles

The NORA library was designed to provide an object interface to
an Oracle database without the requirement of having to know the
particulars of the schema representation nor the rigors of
Embedded-SQL programming. The library provides some of the
capabilities of the SQL language. All language features are not
implemented due to time considerations and usage needs.
However, an SQL gateway class is provided to allow the use of
SQL statements when the existing classes are insufficient.

The ability to query, join and update is represented. The ability to
remove records is apparently included, but the NORA interface
only provides the ability of tagging information as deleted and, for
data integrity reasons, has intentionally omitted delete capability.
Related to this fact is the library’s management of updates. In
similar fashion to delete operations, update operations do not
overwrite information. Instead, current information is tagged as
obsolete in favor of updated information. Despite the space penalty
resulting from this design decision, the benefit of information
tracking and accountability is especially useful during the
debugging process.

3.1.1 NORA Classes

The classes that comprise the NORA library have a very strong
correlation to a number of keywords found in the SQL language.
Similarly, NORA objects are intended to be used together to
construct valid database operations in the same manner that a
syntactically correct SQL statement would be formed. The
remainder of this section identifies the classes that are found in the
NORA library and explains their relevance and relation to other
classes. For details on the programming interfaces and private data
members, please refer to the NORA man pages, the NORA Design
Reference manual or the appropriate header files.

Connection

The Connection class is responsible for managing the connection
with the host (Oracle) database. Generally, only one instance is
required in an application, but it is possible to open several
connections to several remote and local databases or as several
different user names. In order to make a successful database
connection, a valid Oracle user name and password combination
pair is required along with a valid remote host string if accessing a

- 337- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

remote database.

The only other significant capabilities associated with the
Connection class are the commit and rollback functions that are
identical in use to the SQL statements of the same name. Closing a
connection by freeing the object or calling the disconnect member
function will also initiate an implied commit of any outstanding
transactions associated with the Connection.

Database

The Database class is the origin from which the Connection class
originated and is intended to provide backwards compatibility with
early GATEC applications that relied on its presence. Where the
Connection class makes it possible for manage several,
simultaneous database connections, the original Database class had
the provision for only a single active database connection. The
Database class now exists primarily as a front end to the an
underlying Connection object. Its functions are identical to those of
a Connection object and simply call the associated function. The
Database class is a static class and there should only be one
instance of it in any application.

The Database class does serve a useful purpose, however. Many
NORA objects take an optional Connection object which indicates
which database connection is to be used. In the case where only a
single database connection is made, or is dominant over several
other database connections, the Database class identifies the
default Connection that should be used if not supplied in the
various object constructors.

DBObject

The DBObject class is an abstract base class that is responsible for
managing the interface to the host (Oracle) database library
routines. A majority of the Oracle-specific code can be found in
the member functions that populate this class. The only public
member functions associated with it are related to debugging,
monitoring error messages generated and examining the SQL
statements generated by any derived objects. The various protected
member functions contain code that interface with the Oracle Call
Interface (OCI) library thus enabling derived classes to manipulate
data contained in the Oracle database. Cursor management, query
parsing and execution are among the functions available in this
class.

Query

The Query class is derived from the DBObject class and is itself an
abstract base class. It is the base from which the three (current)

- 338- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

types of query structures are derived. It is uniquely responsible for
managing such low-level activity as binding memory locations and
cursor management.

SimpleQuery

A SimpleQuery object was the first Query object developed and
provides basic single table or single join query capability. In order
to construct a query it requires at least one Table object and one
Condition object (described below). It is usually unnecessary to
call any of the member functions provided in this class since many
are called by either the base class or the FetchedRows class (also
see below).

ComplexQuery

The ComplexQuery class is the workhorse query class and can
manage any number of Table, Join (see below) and Condition (see
below) objects. Unlike the SimpleQuery class, the ComplexQuery
class is modifiable in the sense that new queries can be generated
by adding or removing objects. Member functions are included that
all the addition and removal of Table, Join or Condition objects.
However, the class does not provide robust syntax checking of its
objects. This task is the responsibility of the programmer. If a
Table object were to be removed without removing a related Join
object, an error message is sure to be generated during the SQL
statement parsing.

Other than the ability of managing any number of query-related
objects, ComplexQuery is similar to the SimpleQuery class in its
association to the FetchedRows class.

ImmediateQuery

This class will accept a valid SQL query (SELECT statement) that
is free of wildcards in the returned columns list. The returned
columns are stored in a QueryResult (see below) object that, along
with the SQL query string, is a required parameter in the
constructor. Like the above two derived Query classes, the
ImmediateQuery class is intended for use with the FetchedRows
class.

Table

Like the Query class, the Table class is an abstract base class
derived from the DBObject class. The necessity of the Table class
is due to the OCI routines inability to bind to tables. Consequently,
the Table class is used to associate table relationships and table-
column relationships. Specifically, a Table object and its
associated Column (see below) is similar to an Oracle table

- 339- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

description; an Oracle table is equated to a Table object.

Table objects are the basis for all of the objects defined in the
NARQ library. Every class in the NARQ library is derived from
the Table class and is representative of an Oracle database table.

The member functions in the Table class deal primarily with the
management of the contained Column classes. However, this is
usually managed by the derived classes. Beyond the management
functions, the useful functions provide the ability to insert a new
record or update/remove a fetched record, the ability to “dump” the
contents of the table (current row/record) to a string, including to a
CDF format and the ability to lock a table for exclusive use.
Locking a table is useful for long, complex operations that rely on
ensuring that no other database users can make changes to the table
until the operation completes.

Dual

The Dual class is the first of only two specialized NORA class
objects that are derived from the Table class; QueryResult is the
second. It is the function equivalent to the Oracle Dual table. It’s
only intended purpose was in conjunction with the DateColumn
class to derive dates in a multitude of formats, including Julian.

QueryResult

Because the Query class requires a Table object to bind database
information to memory locations, the QueryResult class was
designed to act as the repository for the information. However,
because it is not actually representative of an Oracle table, several
member functions, such as table locking or committing changes,
have had their functionality removed.

Join

The Join class is used by the SimpleQuery and ComplexQuery
classes to define the table relationships to be used in the associated
query. From an SQL vantage point, the join relationship is defined
in the WHERE clause of an SQL statement In addition to
references to two Column objects defined in two separate (or a
single) Table object(s), a Boolean comparison operation must be
specified to define the relationship between the two Tables.
However, it should be noted that, using the ComplexQuery class,
multiple Join relationships can be defined between two or more
Table objects.

Condition

In addition to the Join class , the Condition class is logically used

- 340- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

to define the query condition in the WHERE clause of an SQL
statement. Its basic purpose is to manage any number of
Expression objects (the actual qualifications) as well as providing
the interface to specifying the return order of the query rows. A
Condition object is required by each Query class. However, a
Condition object is not required to specify any Expressions. In this
case, the query will return all rows associated with the Table or
Table joins.

Expression

The Expression class is the remaining NORA objects class (in
addition to the Join and Condition classes) that is used to construct
the WHERE clause portion of the SQL statement constructed by a
Query class. A number of constructor classes provide column-to-
column comparisons as well as column-to-string and column-to-
number comparisons along with “is null” and “exists”
comparisons.

Column

The Column class is an abstract base class from which several
classes related to the various Oracle data types are derived.
Because Column objects are generally owned by a Table object,
member functions are provided to reference back to the Table
object as well as to provide the Table object with information
useful for binding the private data area during database operations.
The only significant remaining member functions allow for
extracting values from and assigning values to the Column object.

It is unlikely that user applications will have any need to directly
instantiate any derived Column object. The NARQ library contains
generated code that is responsible for managing the Table/Column
relationships. Each NARQ object class is responsible for
instantiating the Column objects associated with each Table object.

CharColumn

Derived from the Column class, the CharColumn class is
analogous the Oracle CHAR data type. The only additional
functionality provided by the class is the ability to assign string
values to the Column object.

DateColumn

Derived from the Column class, the DateColumn class is
representative of the Oracle DATE column type. Like the
CharColumn class, additional functionality is provided to allow the
assignment of date values in any format known to Oracle. In
addition, access functions controlling the output date format as

- 341- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

well as providing access to each segment of the date (i.e. hour,
minute, day, month, year, century, etc.)

FloatColumn, LongColumn, NumberColumn

The FloatColumn, LongColumn and NumberColumn classes are
essentially identical with the only difference in the precision of the
number information held by each. Each of the three classes is
based on the Oracle NUMBER data type. Value assignment is
accomplished by numeric or string values.

RawColumn

The Oracle RAW data type allows for any type of information
(including binary) to be stored in the field. The RawColumn class
is nearly identical to the CharColumn class though it is bound to a
different type of underlying data store. The present GATEC
implementation (schema) does not have any instance of raw data.
Consequently, programmatic support of this class is not yet fully
developed. It has been allocated and addressed for the sake of
completeness.

RowID

Oracle allows a query to return a row identifier that can be used to
reference the record directly. However, the numbers generated by
Oracle cannot be guaranteed to be consistent across sessions. To
date, the GATEC development has not yet relied on its
implementation and, as such, it has not yet fully undergone a full
development cycle. Caution is recommended regarding its use.

FetchedRows

The FetchedRows class is used with Query objects to manage the
iteration through the list of returned rows resulting from the query.
Instantiation of a FetchedRows object will initiate (execute) the
associated query. Additional member functions allow fetching the
next row, restarting the query and generating a count of the number
of rows that the query will return.

It should be noted that is the FetchedRows class does not allow
reverse iteration (stepping backwards) through the set of returned
rows. As a future implementation note, this capability should be
possible through the use of the RowID class.

FetchedGroup

Like the FetchedRows class, the FetchedGroup class manages the
returned rows of a Query object. However, unlike the iterative
nature of the FetchedRows class, the FetchedGroup class (though

- 342- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

not yet implemented) is intended to manage sets of objects
representing the entire number of returned rows or a specified
maximum number of returned rows. The object class (again, not
yet implemented) should offer some performance increase in
contrast to the FetchedGroup object, but it will be difficult to
overcome the burdensome memory requirement that seems
unavoidable.

Sequence

The Sequence class is used to extract values from the sequences
defined within Oracle. A sequence is a resource that returns a
series of incremental (or decremental) values guaranteeing unique,
successive values until the sequence reaches its maximum
(minimum) value or specified limit. At such point, the sequence
will reinitialize itself back to its initial value or return error values
for each request depending on how the original sequence was
constructed.

ivList

The ivList class is similar to a template list class implementation
and is intended for use by the NORA library objects. It was
obtained from the library implementation provided as part of the
Stanford InterViews interface project.

3.1.2 Limitations

The major limitation of the NORA library is its incomplete
implementation of the SQL language. There are a number of useful
SQL function calls that have no counterpart in the NORA library.
Their use must be incorporated through new, custom code or
passed through the Immediate Query class. Additionally, the
current incarnation provides no support for Data Definition
Language (DDL) statements such as CREATE, DROP, GRANT
and REVOKE. Though it would be a fairly simple task to support
any SQL statement by modification of ImmediateQuery class
(which limits the use of only SELECT statements), the lack of
structured class support is a negative point. While DDL statements
are of limited use in the GATEC application, their absence is a
major detraction for the use of NORA in future projects. A third
(considerable) limitation is the library’s lack of support for
Oracle’s procedural language, PL/SQL.

3.1.3 Detailed NORA Class Descriptions

- 343- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

The NORA classes are described in the following pages.
3.1.3.1 CharColumn

NAME

 CharColumn - wrapper class for Oracle CHAR column datatype

SYNOPSIS

 #include <nora/CharColumn.h>

DESCRIPTION

 The CharColumn class provides an interface to Oracle columns
defined as type "char." At run-time it is usually bound to specific
named column and assumes information and data related to the
column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use
of the Dual class provides the opportunity to directly instantiate
this type of object.

 CharColumn(Table* t, unsigned size, char* name, char* value)
 Instantiation of a CharColumn object requires an associated table.
The size parameter determines the maximum size of the contents
of the column. It is normally consistent with the Oracle schema
definition and is currently limited to no more than 255 characters.
The name parameter should match the name of the database
column and the (optional) value parameter initializes the object's
contents.

 CharColumn(Table* t, CharColumn* cc)
 Copy constructor

MEMBER FUNCTIONS

 const char* contents(boolean)
 This function returns a string containing thename and value of the
object. The optional paramater determines whether the output
follows the CDF standard and defaults to true if not given.

 int oratype()
 Returns information about the type of data contained in the object.

- 344- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 void operator= (const char*)
 Assignment operation used to set the value of the object.

 void assign_value(const char*)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_char_value(const char*)
 Alternatvie means of assignment. Used to set the value of the
object.

 void empty()
 This function clears the contents of the object and restores its
internal state.

 unsigned length()
 Returns information about the length of the objectUs contents.

SEE ALSO

 Column (3N), Dual(3N), Table(3N), QueryResult(3N)

- 345- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.2 Column

NAME

 Column - Abstract base class for Oracle column types

SYNOPSIS

 #include <nora/Column.h>

DESCRIPTION

 The Column class is a base class from which specific typed
columns are derived from.

CONSTRUCTORS

 The constructor for the Column class is protected, thus
preventing direct instantiation. The presence of several "pure"
virtual functions also impose requirements on derived classes.
Derived classes must take care to define these functions.

MEMBER FUNCTIONS

 const char* name()
 Returns string containing the name of the Oracle table column to
which this object will be bound at run-time.

 Table* table()
 Returns pointer to Table object "owning" this Column object.

 int oratype()
 This is pure virtual function that returns information about the
type of data contained in the object. The value returned is Oracle-
defined.

 const char* db_value()
 This is a pure virtual function that returns the contents of this
object for use by Oracle-specific (OCI)
 library routines.

 void* address()
 This is a pure virtual function that returns a pointer the object's
contents intended for use by Oracle-specific (OCI) library routines.

 unsigned length()

- 346- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 This is a pure virtual function that returns the length of the object's
contents intended for use by Oracle-specific (OCI) library routines.

 const char* contents(boolean)
 This is a pure virtual function that returns a string containing the
name and value of the object. The parameter determines whether
the output follows the CDF standard. const char* value()
 This is a pure virtual function that returns a string containing the
current value of the object.

 void assign_char_value(const char*)
 This is a pure virtual function that accepts the contents of a
character string as the value assigned to this object.

 void assign_null()
 In Oracle terms, a NULL column has no value. This function will
assign a NULL value to the object's contents.

 void ignore(boolean)
 Setting the parameter to true prevents this Column from being
fetched when used in a Query.

 boolean ignore()
 Returns information that specifies whether the column is fetched if
used in a Query.

 boolean null()
 Returns information that indicates whether the object's value is set
to NULL.

 boolean modified()
 Returns information indicating whether the contents have been
altered by a user process. Updates made by the Query classes are
not applicable.

 unsigned size()
 Returns information about the size of the object's contents.

SEE ALSO

 Table (3N), Query (3N), SimpleQuery (3N)

- 347- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.3 DBObject

NAME

 DBObject - manages interface to host (Oracle) database library
routines

SYNOPSIS

 #include <nora/DBObject.h>

DESCRIPTION

 The DBObject class is an abstract base class that contain routines
that interface with the Oracle Call Interface (OCI)
 routines enabling derived class to manipulate Oracle databases via
the Oracle library calls defined in this class.

CONSTRUCTORS

Because this is an abstract base class, the constructor is protected,
thus preventing direct instantiation of objects of this type.

MEMBER FUNCTIONS

 boolean debug()
 Returns information about the current state of debugging
operations.

 void debug(boolean)
 Define whether debugging code should be turned on/off.

 const char* ora_error_msg()
 If an Oracle error has occured, this function will return the Oracle-
generated error message corresponding to the fault.

 const char* error_msg()
 If a user-specified error message has been provided, this function
will return a string containing the error message.

 char* show_sql()
 Returns a string containing the SQL code that was generated by a
derived object.

 PROTECTED
MEMBER FUNCTIONS

- 348- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 These functions are available only to derived classes.

 cursor* cursor()
 This function returns the pointer to an Oracle-defined structure
that contains information needed by the OCI routines.

 void parse(char*)
 This functions is used by derived Query classes and is a required
first step in the process of extracting data from the database. The
parameter should be a valid SQL query string.

 void parse()
 This function is used by derived Query classes and is a required
first step in the process of extracting data from the database. The
query to be parsed is the string currently defined in the object.

 void execute()
 This functions is used by derived Query classes to "start" a query
after it has been parsed. It does not fetch any values from the
database.

 boolean commit()
 This function is used by derived Table classes to commit data to
the database. Note that the transaction is not permanent until a
commit is invoked in the Database class (unless the autocommit
mode is turned on.)
 void abort()
 This function is used by derived Query classes to cancel a query in
progress.

 void restart()
 This function is used by derived Query classes. It provides the
ability to cancel a query and restart it.

 void fetch()
 This function is used by the derived Query classes. After a query
has been parsed and executed, this call fetches the returned row(s)
from the database.

 int ora_error_val()
 Returns the error value returned by OCI calls. This should be used
in conjunction with the ora_error()
 function call to determine when errors have occured.

 boolean ora_error()
 Returns information about whether an Oracle error has occured.

 void error_msg(char*)
 This function allows a derived object to embed application-

- 349- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

specific error messages.

 void clear_string()
 Clears the buffer containing generated SQL code.

SEE ALSO

 Connection (3N), Database (3N), Table (3N), Query (3N)

- 350- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.4 Connection

NAME

 Connection - manages connections to host (Oracle) databases

SYNOPSIS

 #include <nora/defs.h> #include <nora/Connection.h>

DESCRIPTION

 The Connection class is the singular method used to establish
connections with an Oracle database. This is also the mechanisms
that allows for multiple Oracle logons in the same user process.
Once an Oracle connection is established, this class is responsible
for committing or rolling back outstanding transactions on a per
Connection basis.

CONSTRUCTORS

 Connection(char* username, char* passwd, char* remotedb)
 The constructor's parameters allow the user to specify the
username and password pair for a valid ORACLE user. The
remotedb parameter is optional and defaults to the local machine or
any remote database defined in the user's environment. (See Oracle
manual for specifics). The connected() member function will
indicatee whether a successful connection was established.

MEMBER FUNCTIONS

 boolean connected()
 Returns information about whether an active database connection
exists.

 void disconnect()
 Close the existing database connection. All uncommitted
transactions are committed. To disconnect without committing
outstanding transactions, use the rollback() member function
before disconnecting.

 const char* username()
 Returns a string indicating the Oracle user name used to connect
to the database.

 boolean commit()

- 351- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Commit all outstanding transactions. Returns information about
the success of the operation. If false is returned, the
ora_error_msg() function indicates the reason for the failure. If the
connection is configured to automatically commit transactions (see
autocommit() below), this function will have no effect.

 boolean rollback()
 Rollback all outstanding transactions. Returns information about
the success of the operation. If false is returned, the
ora_error_msg() function indicates the reason for the failure. If the
connection is configured to automatically commit transactions (see
below), this function will have no effect.

 boolean autocommit()
 Returns information about whether the connection autmatically
commits individual transactions at the Table level (see Table(3N)).
This is typically set to false.

 void autocommit(boolean value)
 Defines whether the connection will automatically commit
individual transactions.

 const char* ora_error_msg()
 If an Oracle error has occured, this function will return the Oracle-
generated error message corresponding to the fault.

 cursor* lda()
 This function provides access to the Oracle-defined logon data
area used by the Oracle Call Interface (OCI)
 library calls. This is useful for constructing specialized database
access routines that use OCI calls.

 boolean debug()
 Returns information about the current state of debugging
operations.

 void debug(boolean value)
 Define whether debugging code should turned on/off.

- 352- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.5 Database

NAME

 Database - establishes default connection to host (Oracle)
 databases

SYNOPSIS

 #include <nora/defs.h> #include <nora/Database.h>

DESCRIPTION

 The Database class was originally the only means to connect to
an Oracle database. However, it only allowed one active
connection. It has been superceded by the Connection class. The
Database class now exists as a front end to a single Connection and
serves a useful purpose in specifying the primary (or default) user
connection.

CONSTRUCTORS

 This is a static class with no public constructor. To open a
Connection to a database, an instance must be first be created.
Once created, the connect member function is used to open the
connection. An example follows:

 Connection* oracle_user = new Connection("scott", "tiger");
 Database* db = Database::instance();
 if (db->connect(oracle_user)) { cout << "Connection established"
<< endl;
 }

MEMBER FUNCTIONS

 With the exception of the connect() and connected() member
functions, these functions assume that a Connection object (open
Oracle connection) exists.

 boolean connect(Connection*)
 This function is called to define the default Connection.

 boolean connected()
 Returns information about whether the Connection is active.

 void disconnect()

- 353- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Close the existing database connection. All uncommitted
transactions are committed.

 const char* username()
 Returns a string indicating the Oracle user name associated with
the Connection.

 boolean commit()
 Commit all outstanding transactions. Returns information about
the success of the operation. If false is returned, the
ora_error_msg() function indicates the reason for the failure. If the
connection is configured to automatically commit transactions (see
below), this function will have no effect.

 boolean rollback()
 Rollback all outstanding transactions. Returns information about
the success of the operation. If false is returned, the
ora_error_msg() function indicates the reason for the failure. If the
connection is configured to automatically commit transactions (see
below), this function will have no effect.

 boolean autocommit()
 Returns information about whether the connection autmatically
commits individual transactions at the Table level (see Table(3N)).

 void autocommit(boolean value)
 Defines whether the connection will automatically commit
individual transactions.

 const char* ora_error_msg()
 If an Oracle error has occured, this function will return the Oracle-
generated error message corresponding to the fault.

 cursor* lda()
 This function provides access to the Oracle-defined logon data
area used by the Oracle Call Interface (OCI)
 library calls. This is useful for custom database access routines.

 boolean debug()
 Returns information about the current state of debugging
operations.

 void debug(boolean value)
 Define whether debugging code should turned on/off.

 static Database* instance()
 This function returns a pointer to the static Database instance.

SEE ALSO

- 354- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Connection (3N), Table (3N)
 3.1.3.6 Condition

NAME

 Condition - Equivalent to Oracle WHERE clause

SYNOPSIS

 #include <nora/Condition.h>

DESCRIPTION

 The Condition class is the framework for defining the WHERE
clause of a generated query. It is required by both the SimpleQuery
and ComplexQuery classes.

CONSTRUCTORS

 Condition()
 An empty constructor can be equated to an empty where clause. In
this case, all rows are returned.

 Condition(Expression*)
 The Expression parameter is used as the first clause in the
WHERE clause.

MEMBER FUNCTIONS

 boolean defined()
 Returns information about whether any Expressions have been
defined. Basically, his indicates whether the SQL WHERE clause
is defined.

 const char* expr_stmt()
 Returns string containing only the expressions that would be
included in the generated SQL clause.

 const char* order_stmt()
 Returns string containing only the ORDER BY portion of the
generated SQL clause.

 const char* statement()
 Returns string containing the complete SQL for the constructed
WHERE clause.

- 355- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void reset_cond()
 Remove all defined Expression relationships.

 void reset_order()
 Remove any defined row ordering.

 void reset()
 Purge all definitions; remove all contained Expressions and row
order relationships.

 void and(Expression*)
 Add an Expression to the Condition. If the Expression is the first
Expression, no special functions are performed. If Expressions
already exist, the new Expression is prefixed with the AND
keyword.

 void or(Expression*)
 Add an Expression to the Condition. If the Expression is the first
Expression, no special functions are performed. If Expressions
already exist, the new Expression is prefixed with the OR
keyword.

 void and(Condition*)
 Add in the Expressions contained in the Condition parameter. If
no Expressions exist, the contents are copied exactly. If
Expressions already exist, the AND keyword is prefixed.

 void or(Condition*)
 Add in the Expressions contained in the Condition parameter. If
no Expressions exist, the contents are copied exactly. If
Expressions already exist, the OR keyword is prefixed.

 void order_by(Column*)
 Define the ordering of the returned rows of the Query that will use
this Condition. Subsequent invocations define the secondary
columns for the ordering.

 void and(Expression* e1, LogicalOp l, Expression* e2, ...)
 Short cut to using the and() and or() functions. AND is prefixed to
beginning of clause. Accepts variable number of parameters.
Subsequent parameters should alternate between LogicalOp and
Expression. The list must be terminated by a NOOP LogicalOp.

 void or(Expression* e1, LogicalOp l, Expression* e2...)
 Short cut to using the and() and or() functions. OR is prefixed to
beginning of clause. Accepts variable number of parameters.
Subsequent parameters should alternate between LogicalOp and
Expression. The list must be terminated by a NOOP LogicalOp.

- 356- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void and(Condition* c1, LogicalOp l, Condition* c2, ...)
 Short cut to using the and() and or() functions. AND is prefixed to
beginning of clause. Accepts variable number of parameters.
Subsequent parameters should alternate between LogicalOp and
Condition. The list must be terminated by a NOOP LogicalOp.

 void or(Condition* c1, LogicalOp l, Condition* c2...)
 Short cut to using the and() and or() functions. OR is prefixed to
beginning of clause. Accepts variable number of parameters.
Subsequent parameters should alternate between LogicalOp and
Condition. The list must be terminated by a NOOP LogicalOp.

 void order_by(Column* c1, Column* c2, ...)
 Short cut to specifying row ordering. Variable number of
parameters are accepted, all of type Column. The list must be
terminated by a null Column reference.

 PROTECTED MEMBER FUNCTIONS

 void build_cond(char* and_or, Condition* c1, LogicalOp l,
Condition* c2, va_list ap)
 Construct SQL clause using known Conditions

 void attach_va_cond(va_list va_l)
 Maintain internal Condition list

 void build_expr(char* and_or, Expression* c1, LogicalOp l,
Expression* c2, va_list ap)
 Construct SQL clause using known Expressions

 void attach_va_expr(va_list va_l)
 Maintain internal Expression list

SEE ALSO

 Expression (3N)

- 357- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.7 Dual

NAME

 Dual - Equivalent to Oracle "Dual" table

SYNOPSIS

 #include <nora/Dual.h>

DESCRIPTION

 The Dual class is derived from the Table class and was designed
for use with the DateColumn class.

CONSTRUCTORS

 Dual()
 The constructor takes no arguments.

MEMBER FUNCTIONS

 Because the Dual class is derive from the abstract Table class,
several virtual functions are defined, but have no functionality
(contain no code.) Modifications to the "dual" table are not
allowed.

 const char* name()
 Returns a string containing the the value, "Dual."

SEE ALSO

 Column (3N), DateColumn (3N), Table (3N)

- 358- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.8 ComplexQuery

NAME

 ComplexQuery - Modifiable Query class

SYNOPSIS

 #include <nora/ComplexQuery.h>

DESCRIPTION

 The ComplexQuery class is derived from the Query class and
allows modification to the object's contents to effectively
reconstruct the underlying SQL query. There is NO error checking
for badly formed query constructs.

CONSTRUCTORS

 ComplexQuery(Table*, Condit ion*, boolean uniq
ReturnResult results)
 Single table query. This constructor is the simplest way to begin
constructing a query.

 ComplexQuery(Connection*, Table*, Condition*, boolean unique,
ReturnResult results)
 Identical to the above single table query. However, instead of
using the connection defined by the static Database instance, a
separate Connection can be used instead.

 ComplexQuery(Table* t1, Condition* c, Table* t2, Join* j,
boolean uniq, ReturnResult results)
 This constructor is an identical interface to Simple-Query allowing
for a simple migration for queries that need to expand in scope.

 ComplexQuery(Connection*, Table* t1, Condition* c, Table* t2,
Join* j, boolean uniq, ReturnResult results)
 Identical to the above SimpleQuery interface with the provision
for specifying a Connection other than the default set in the
Database instance.

 ComplexQuery(TableList* t, ConditionList* c, JoinList* j,
boolean uniq, ReturnResult results)
 This is the fastest was to construct a query since the generation of
the lists of Tables, Conditions, and Joins is already in place.

- 359- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

MEMBER FUNCTIONS

 unsigned count()
 Returns the number of rows that would be fetched by the query.

 void add(Table*)
 Insert a Table reference into the internal Table list.

 void add(Condition*)
 Insert a Condition reference into the internal Condition list.

 void add(Join*)
 Insert a Join reference into the internal Join list.

 void add(Table* t, Condition* c, Join* j)
 Short-cut method to insert references to a Table, Condition, and
Join objects into their respective internal lists.

 boolean remove(Table*)
 Remove a Table reference into the internal Table list. If the
reference is not found, no modifications are made.

 boolean remove_table(unsigned)
 Remove a Table reference into the internal Table list. If there is no
Table reference in the indicated position, no modifications are
made.

 boolean remove(Condition*)
 Remove a Condition reference into the internal Condition list. If
the reference is not found, no modifications are made.

 boolean remove_condition(unsigned)
 Remove a Condition reference into the internal Condition list. If
there is no Condition reference in the indicated position, no
modifications are made.

 boolean remove(Join*)
 Remove a Join reference into the internal Join list. If the reference
is not found, no modifications are made.

 boolean remove_join(unsigned)
 Remove a Join reference into the internal Join list. If there is no
Join reference in the indicated position, no modifications are made.

 const ConditionList* conditions()
 Returns a list of the Conditions that are defined for this Query.

 const JoinList* joins()
 Returns a list of the Joins that are defined for this Query.

- 360- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 const TableList* tables()
 Returns a list of the Tables that are defined for this Query.
ReturnResult return_result()
 Returns information about the type of row results that will be
returned by the query.

 boolean evaluate()
 This function constructs the SQL query that is defined by the
objects that comprise this object. The generated SQL is then passed
to Oracle to be parsed. Information about the success of this action
is returned.

SEE ALSO

 Condition(3N), Join(3N), Query (3N), SimpleQuery(3N),
Table(3N)

- 361- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.9 DateColumn

NAME

 DateColumn - wrapper class for Oracle DATE column datatype

SYNOPSIS

 #include <nora/DateColumn.h>

DESCRIPTION

 The DateColumn class provides an interface to Oracle columns
defined as type "date." At run-time it is usually bound to specific
named column and assumes information and data related to the
named column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use of
the Dual class provides the opportunity to directly instantiate this
type of obhect.

 DateColumn(Table* t, char* name, char* val, const char* in_fmt,
const char* out_fmt)
 Instantiation of a DateColumn object requires an associated table.
The name parameter should match to the name of the database
column and the (optional) value parameter initializes the contents.
If a value is given it is required to be in the format, "DD-MON-
YYYY" or it must specify the format used in the in_fmt parameter.
The default output format is specified as "YY MM DD", but may
(optionally) specified in the out_fmt parameter. In all cases, time
as well as date information can be specified in a number of
formats. See the Oracle manual for allowable date formatting
options.

 DateColumn(Table* t, DateColumn* cc)
 Copy constructor

MEMBER FUNCTIONS

 const char* contents(boolean useCDF)
 This function returns a string containing thename and value of the
object. the useCDF paramater determines whether the output
follows the CDF output standard. The default method is to use

- 362- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

CDF formatting.

 int oratype()
 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 void obtain_date(const char*)
 Query database for date. The parameter is contains an SQL string
asking for the date.

 unsigned second()
 Returns the number of seconds in the currently defined date.

 unsigned minute()
 Returns the number of minutes in the currently defined date.

 unsigned hour()
 Returns the number of hours in the currently defined date.

 unsigned day()
 Returns the day of the currently defined date. The numbers one
through seven correspond to the days of the week, Sunday through
Saturday.

 unsigned month()
 Returns the month of the currently defined date. The numbers one
through twelve correspond to the months of the year, January
through December.

 const char* month(unsigned m, boolean long_format)
 Returns a string containing the name of the month specified in the
first parameter. The boolean parameter defines the format of the
returned string. As the default (false), short months are returned
(i.e. "Jan") instead of the full name (i.e. "January".) unsigned
year(boolean include_century) Return the year of the currently
defined date. The boolean parameter indicates whether to prefix the
defined century.

 unsigned century()
 Return the century of the currently defined date.

 void today() ;
 Sets the defined date to be the current date and time.

 const char* output_format() ;
 Returns a string containing the format used to express the
contained date.

 void output_format(const char*)
 Sets the format of the output date string. The format of the

- 363- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

parameter string should conform with the Oracle specification of a
date string.

 const char* value()
 Returns a string containing the current value of this object. const
char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 void operator= (const char*)
 Assignment operation used to set the value of the object. Care
must be taken when using this method to ensure that the format of
the date to be assigned equates to the input format defined in the
object.

 void assign_value(const char*)
 Alternative means of assignment; identical to the operator=
member function. Care must be taken when using this method to
ensure that the format of the date to be assigned equates to the
input format defined in the object.

 void assign_char_value(const char* val, const char* Alternative
means of assignment. Used to set the value of the object.

 unsigned length()
 Returns information about the length of the object's contents.

SEE ALSO

 Column (3N), Dual(3N), Table(3N), QueryResult(3N)

- 364- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.10 Expression

NAME

 Expression - used by Condition class to define WHERE clause

SYNOPSIS

 #include <nora/Expression.h>

DESCRIPTION

 The Expression class is used to define singular relations within
an SQL WHERE clause.

CONSTRUCTORS

 Expression()
 An empty constructor provides the basis for defining a relational
clause. An empty constructor should not be passed to the Condition
class.

 Expression(Column* col1, BooleanOp op, Column* col2, boolean
assign = false, boolean caseSensitive)
 Construct relational clause that compares two table columns. The
BooleanOp (op) parameter is a boolean relation that will be used to
compare the two columns.

 Expression(NumberColumn* col1, BooleanOp op, int col2,
boolean assign = false)
 Construct relational clause that compares a Number-Column to a
value. The BooleanOp (op) parameter is a boolean relation that
will be used to compare the column to the value.

 Expression(NumberColumn* col1, BooleanOp, float col2, boolean
assign = false)
 Construct relational clause that compares a Number-Column to a
value. The BooleanOp (op) parameter is a boolean relation that
will be used to compare the column to the value.

 Expression(NumberColumn* col1, BooleanOp, const char* col2,
boolean assign = false)
 Construct relational clause that compares a Number-Column to a
string containing a value. The BooleanOp (op) parameter is a
boolean relation that will be used to compare the column to the
value.

- 365- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Expression(FloatColumn* col1, BooleanOp, const char* col2,
boolean assign = false)
 Construct relational clause that compares a FloatColumn to a
string containing a value. The BooleanOp (op)
 parameter is a boolean relation that will be used to compare the
column to the value.

 Expression(CharColumn* col1, BooleanOp, const char* col2,
boolean assign = false, boolean caseSensitive = false)
 Expression(DateColumn* column, BooleanOp, const char* date,
boolean assign = false)
 Construct relational clause that compares a CharColumn to a
string value. The BooleanOp (op) parameter is a boolean relation
that will be used to compare the column to the value.

MEMBER FUNCTIONS

 void reset()
 Remove all existing relations.

 void compare(Column* col1, BooleanOp op, Column* col2,
boolean assign = false, boolean caseSensitive = false)
 This function is used to prep the SQL segment in the case of a
comparison between two columns.

 void compare(NumberColumn* col1, BooleanOp op, int col2,
boolean assign = false)
 This function is used to prep the SQL segment in the case of a
comparison between a NumberColumn and a value.

 void compare(NumberColumn* col1, BooleanOp op, float col2,
boolean assign = false)
 This function is used to prep the SQL segment in the case of a
comparison between a NumberColumn and a value.

 void compare(NumberColumn* col1, BooleanOp op, const char*
col2, boolean assign = false)
 This function is used to prep the SQL segment in the case of a
comparison between a NumberColumn and a value.

 void compare(FloatColumn* col1, BooleanOp, const char* col2,
boolean assign = false)
 This function is used to prep the SQL segment in the case of a
comparison between a FloatColumn and a value. void
compare(CharColumn* col1, BooleanOp op,

 const char* col2, boolean assign = false, boolean caseSensitive)
 This function is used to prep the SQL segment in the case of a
comparison between a CharColumn and a character string.

- 366- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void compare(DateColumn* col1, BooleanOp op, const char*
date, boolean assign = false)
 This function is used to prep the SQL segment in the case of a
comparison between a DateColumn and a date string. The date
string must in the same format as the current input specification of
the DateColumn.

 const char* statement()
 Returns a character string that is used for inclusion in a complete
SQL query.

 void isnull(Column* column)
 Create SQL segement that tests whether the specified Column has
a value.

 void exists(Column* column)
 Create SQL segement that tests whether the specified Column has
a value (is not null.)

PROTECTED MEMBER FUNCTIONS

 void build_expr(const char* col1, BooleanOp op, const char*
col2)
 Construct SQL segment that defines relation.

SEE ALSO

 Condition (3N)

- 367- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.11 FetchedGroup

NAME

 FetchedGroup - Initiates database queries and handles ALL
returned rows

SYNOPSIS

 #include <nora/FetchedGroup.h>

DESCRIPTION

 Unlike the FetchedRows class, the FetchedGroup returns all rows
from a Query up to a defined limit. However, to be honest, this
class has not yet been implemented.

CONSTRUCTORS

 FetchedGroup(Query*)

MEMBER FUNCTIONS

 void fetch_value(unsigned col, char* value)
 void fetch_value(unsigned col, unsigned* value)
 void fetch_value(unsigned col, float* value)
 void restart()
 Cancel the outstanding query (if it exists) and restart.

 unsigned count()
 Returns the total number of returned rows in the query.

SEE ALSO

 FetchedRows (3N), Query(3N)

- 368- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.12 FetchedRows

NAME

 FetchedRows - Initiates database queries and handles returned
rows

SYNOPSIS

 #include <nora/FetchedRows.h>

DESCRIPTION

 The FetchedRows class provides the ability to iterate through the
returned rows defined by a Query class.

CONSTRUCTORS

 FetchedRows(Query*)

MEMBER FUNCTIONS

 void fetch_value(unsigned col, char* value)
 Currently undefined.

 void fetch_value(unsigned col, unsigned* value)
 Currently undefined.

 void fetch_value(unsigned col, float* value)
 Currently undefined.

 void restart()
 Cancel the outstanding query (if it exists) and restart.

 int current()
 count to see where we are; negative if no more rows

 unsigned next()
 Fetch the next row from the database. A negative value is returned
if no more rows are available.

 unsigned count()
 Returns the total number of returned rows in the query.

SEE ALSO

 Query(3N)

- 369- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.13 FloatColumn

NAME

 FloatColumn - wrapper class for Oracle FLOAT (NUMBER)
column datatype

SYNOPSIS

 #include <nora/FloatColumn.h>

DESCRIPTION

 The FloatColumn class provides an interface to Oracle columns
defined as type "float." At run-time it is usually bound to specific
column and assumes information and data related to the column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use
of the Dual class provides the opportunity to directly instantiate
this type of object. Instantiation of a FloatColumn object requires
an associated table. The table should have a column consistent with
the type of this object (NUMBER.) FloatColumn(Table* t, char*
name, float value) The name parameter should match the name of
the database column and the (optional) value parameter initializes
the object's contents.

 FloatColumn(Table* t, char* name, double value)
 The name parameter should match the name of the database
column and the (optional) value parameter initializes the object's
contents.

 FloatColumn(Table* t, FloatColumn* fc)
 Copy constructor.

MEMBER FUNCTIONS

 const char* contents(boolean)
 This function returns a string containing the name and value of the
object. The optional parameter determines whether the output
follows the CDF standard and defaults to true if not given.

 int oratype()

- 370- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

 float float_value()
 Returns the value of the object's contents.

 double double_value()
 Returns the value of the object's contents.

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 void assign_value(const char*)
 Used to set the value of the object.

 void assign_value(float)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_value(double)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_char_value(const char*)
 Alternative means of assignment. Used to set the value of the
object.

 unsigned length()
 Returns information about the length of the objectUs contents.

SEE ALSO

 Column (3N)

- 371- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.14 ImmediateQuery

NAME

 ImmediateQuery - query class that allows free-formatted queries

SYNOPSIS

 #include <nora/ImmediateQuery.h>

DESCRIPTION

 The ImmediateQuery is derived from the Query class and will
accepted a valid SQL query that does not contain any wildcards in
the SELECT list. The returned columns are stored in a
QueryResult object. A restriction is in place that only allows
SELECT statements to used.

CONSTRUCTORS

 ImmediateQuery(QueryResult* qr, const char* query_string)
 The constructor accepts a QueryResult reference to contain the
resulting output of the query and an SQL SELECT statement that
drives the query.

 boolean next()
 During a query, fetches the next row corresponding to the query.
Returns information about whether the fetch succeeded.

 boolean evaluate()
 Trigger all of the contained objects to generate their SQL segents
and send the result to Orace for parsing. Information about the
success of the parsing operation is returned.

 unsigned returned_columns()
 Returns information about the number of columns that will be
returned.

 unsigned count()
 Returns the number of rows that will be returned.

 boolean is_query()
 Returns information about whether a valid SQL query is
contained.

 unsigned count_columns()
 Returns information about the number of columns that will be

- 372- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

returned by the query.

SEE ALSO

 FetchedRows(3N), Query (3N), QueryResult (3N)

- 373- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.15 Join

NAME

 Join - equivalent to Oracle joins; specify table relationships for
queries

SYNOPSIS

 #include <nora/Join .h>

DESCRIPTION

 The Join class is used to specify table relationships for SQL
queries. The relationship itself is realized in the WHERE clause of
a generated SQL Query.

CONSTRUCTORS

 Join(Column* col_a, Column* col_b, BooleanOp)
 The constructor requires two Column objects and an (optional)
third argument that defines the relationship between the two
columns. If the third argument is not supplied, it defaults to "EQ";
an equality comparison.

MEMBER FUNCTIONS

 void compare(BooleanOp)" The parameter modifies the
relationship between the two Columns to use the specified
relationship.

 BooleanOp compare()" Returns information about the current
relationship between the two Columns.

 Column* col_a()" Returns a reference pointer to the first Column
supplied in the constructor.

 Column* col_b()" Returns a reference pointer to the second
Column supplied in the constructor.

 const char* statement()" Returns a string containing the SQL code
appropriate to the relationship to be used as part of a Query.

 USAGE NOTES To improve query performance, it is necessary to
consider the two tables corresponding to the two Columns
specified in the constructor. The Column that is associated with the

- 374- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

table with the largest number of rows should be the first column
specified in the constructor.

SEE ALSO

 Column (3N), ComplexQuery (3N), SimpleQuery (3N)

- 375- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.16 LongColumn

NAME

 LongColumn - wrapper class for Oracle LONG column datatype

SYNOPSIS

 #include <nora/LongColumn.h>

DESCRIPTION

 The LongColumn class provides an interface to Oracle columns
defined as type "long." At run-time it is usually bound to specific
column and assumes information and data related to the column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use
of the Dual class provides the opportunity to directly instantiate
this type of object.

 LongColumn(Table* t, unsigned length, char* name, Instantiation
of a LongColumn object requires an associated table. The length
parameter determines the size of the object's contents and should
correspond to the schema definition. The name parameter should
also match the name of the database column and the (optional)
value parameter initializes the object's contents.

 LongColumn(Table* t, LongColumn* lc)" Copy constructor

MEMBER FUNCTIONS

 const char* contents(boolean)
 This function returns a string containing thename and value of the
object. The optional paramater determines whether the output
follows the CDF standard and defaults to true if not given.

 int oratype()
 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

- 376- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations. void operator= (const char*)
 Assignment operation used to set the value of the object.

 void assign_value(const char*)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_char_value(const char*)
 Alternatvie means of assignment. Used to set the value of the
object.

 unsigned length()
 Returns information about the length of the objectUs contents.

SEE ALSO

 Column (3N), Dual (3N), Table(3N), QueryResult(3N)

- 377- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.17 QueryResult

NAME

 QueryResult - pseduo-table used in conjunction with
ImmediateQuery class

SYNOPSIS

 #include <nora/QueryResult.h>

DESCRIPTION

 The QueryResult class is derived from the Table class and is
used to return

CONSTRUCTORS

 QueryResult(char*)
 The single (optional) parameter "names" the object. This is
currently not useful and defaults to "QueryResult".

MEMBER FUNCTIONS

 const char* contents(boolean)
 Generating CDF output is disabled.

 boolean modified()
 This is an artifat of the Table implementation. Modifications to
contained columns are not very useful.

 boolean commit()
 This is an artifat of the Table implementation. Commits are not
allowed.

 void ignore_all(boolean)
 This function is ignored since the SQL query is hardcoded; all
columns are retrieved.

 boolean ignore_all()
 This function is ignored since the SQL query is hardcoded; all
columns are retrieved.

 void lock()
 Since no "actual" Table objects are being used, table locking is not
allowed.

- 378- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SEE ALSO

 Column(3N), ImmediateQuery(3N), Table (3N)

- 379- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.18 RowID

NAME

 RowID - wrapper class for Oracle ROWID column datatype

SYNOPSIS

 #include <nora/RowID.h>

DESCRIPTION

 The RowID class provides an interface to Oracle columns
defined as type "rowid." At run-time it is usually bound to specific
column and assumes information and data related to the column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use
of the Dual class provides the opportunity to directly instantiate
this type of object.

 RowID(Table* t)" Instantiation of a RowID object requires an
associated table. There are no other parameters since the format is
fixed.

MEMBER FUNCTIONS

 int oratype()
 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 unsigned length()
 Returns information about the length of the objectUs contents.

- 380- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SEE ALSO

 Column (3N), Dual (3N), Table(3N), QueryResult(3N)

- 381- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.19 Sequence

NAME

 Sequence - interface to Oracle sequences

SYNOPSIS

 #include <nora/Sequence.h>

DESCRIPTION

 The Sequence classes is used to extract values from Oracle
sequences. A sequence is a resource that returns a series of
incremental/decremental values guaranteeing unique, successive
values unless the sequence is configured to "roll over" and the
cycle repeats.

CONSTRUCTORS

 Sequence(char* sequence_name)
 The parameter is a string containing the name of the Oracle
sequence of interest.

MEMBER FUNCTIONS

 char* current_value()
 Returns a character string containing the current value of the
sequence. Subsequent calls will return the same value.

 char* next_value()
 Retrieves the next value from the sequence. Subsequent calls will
return new values constrained to the conditions described above.

- 382- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.20 SimpleQuery

NAME

 SimpleQuery - basic interface for Oracle query capabilities

SYNOPSIS

 #include <nora/SimpleQuery.h>

DESCRIPTION

 The LongColumn class provides an interface to Oracle columns
defined as type "long." At run-time it is usually bound to specific
column and assumes information and data related to the column.

CONSTRUCTORS

 SimpleQuery(Table* t1, Condition* c, Table* t2, Join* j,
boolean uniq = false)
 The constructor allows for the definition of a one table or two
table relational join. The second Table parameter is optional as is
the Join operator. A Join should be included if two Tables are
specified.

 SimpleQuery(Connection* x, Table* t1, Condition* c, Table* t2,
Join* j, boolean uniq = false)
 Identical to the above constructor with the provision for specifying
a Connection separate from the default Connection defined in the
Database instance.

MEMBER FUNCTIONS

 boolean next()
 During a query, fetches the next row corresponding to the query.
Returns information about whether the fetch succeeded.

 void bind_column(unsigned col, char* val, unsigned len)
 Bind a memory location to the column in the specified position.
This should be used with CharColumn Column types.

 void bind_column(unsigned col, unsigned* val)
 Bind a memory location to the column in the specified position.
This should be used with NumberColumn Column types.

 void bind_column(unsigned col, float* val)

- 383- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 Bind a memory location to the column in the specified position.
This should be used with FloatColumn Column types.

 void bind_column(Column* col, char* val)
 Bind a memory location to the specified column. This should be
used with CharColumn Column types.

 void bind_column(Column* col, unsigned* val)
 Bind a memory location to the specified column. This should be
used with NumberColumn Column types.

 void bind_column(Column* col, float* val)
 Bind a memory location to the specified column. This should be
used with FloatColumn Column types.

 boolean evaluate()
 Trigger all of the contained objects to generate their SQL segents
and send the result to Orace for parsing. Information about the
success of the parsing operation is returned.

 unsigned returned_columns()
 Returns information about the number of columns that will be
returned.

 unsigned count()
 Returns the number of rows that will be returned.

 PROTECTED
MEMBER FUNCTIONS

 const char* table_column_names(Table*)
 Generates a string containing the names of the Tables used.

SEE ALSO

 Condition(3N), Join(3N), Query(3N), Table(3N)

- 384- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.21 Table

NAME

 Table - wrapper for Oracle relational database tables

SYNOPSIS

 #include <nora/Table.h>

DESCRIPTION

 The Oracle Call Interface (OCI) routines do not allow binding to
a table and accessing its functions, so the Table class is used to
associate table relationships and table- >column relationships.
Specifically, a Table object and its associated Column objects is
similar to an Oracle table description; an Oracle table can be
equated to a Table object.

CONSTRUCTORS

 The Table class is derived from the DBObject base class and is
itself a generic base class for specifically constructed tables to be
derived. The constructor is protected preventing any direct
instantiation of this object. public:

 const char* name()
 Returns string containing the name of the underlying Oracle table.
The derived QueryResult class does not correspond to an Oracle
table and will return the name used to instantiate the object.

 unsigned columns()
 Returns the number of columns associated with this table.

 Column* column(char* column_name)
 This function will search its column list for a column with the
given name. If a matching column name is found, a pointer to the
Column class is returned. A null pointer is returned if no match is
found.

 Column* column(unsigned position)
 Returns a pointer to a Column class based upon its internal
position. A null pointer if the supplied parameter is out of range.

 void insert(unsigned position, Column* col)
 Insert a Column into the internal Table list at a specific position.
The Column is appended to the list if the position exceed the

- 385- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

maximum position. This function is largely used by the code
generators its use with generated code is not recommended.

 void append(Column* col)
 Append a Column to the end of the internal Table list . This
function is largely used by the code generators its use with
generated code is not recommended.

 void remove(unsigned position)
 Remove a Column at a specific position from the internal Table
list. This function is largely used by the code generators its use
with generated code is not recommended.

 void remove(char* column_name)
 Remove a Column, based upon the column names, from the
internal Table list. If a Column with a matching name is not found,
no changes are made. This function is largely used by the code
generators its use with generated code is not recommended.

 const char* contents(boolean)
 This is a "pure" virtual function that returns a CDF-like formatted
character string. This function must be defined by any derived
class.

 boolean modified()
 Returns information about whether any of the Table's internal
columns have been updated by user code.

 boolean remove_row()
 When used in conjunction with the Query classes, this function
will "remove" a row from any subsequent queries.

 boolean commit()
 This function will "commit" the contents of the Table as though it
were committing a record to the database. When used in
conjunction with the Query classes, this function will update
changes made to the Table. The successful completion of the
operation is returned. Note that a commit is required at the
Database level in order to make the changes permanent (unless the
auto-commit feature is turned on.) void ignore_all(boolean) The
parameter will determine whether the generated SQL code will
retrieve all or none of the columns pertaining to this Table.

 boolean ignore_all()
 As a performance preventative measure, this function will modify
the generated SQL code to NOT retrieve all columns pertaining to
this Table.

 void lock()
 The function places an EXCLUSIVE LOCK on the associated

- 386- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Oracle table until a commit() or rollback() is performed at the
Database level.

PROTECTED MEMBER FUNCTIONS

 boolean row_exists()
 This is a "pure" virtual function and must be defined by any
derived object. The function is during a table commit to determine
if a record containing the same key is already in the database.

 boolean update_active_row()
 This is a "pure" virtual function and must be defined by any
derived object. The function is used during a table commit to
"audit" an existing row containing the same key to make way for a
"new" row.

 boolean remove_active_row()
 This is a "pure" virtual function and must be defined by any
derived object. The function alters a table row in a manner that
effectively removes it from being returned by the SimpleQuery and
ComplexQuery query classes.

SEE ALSO

 Column(3N)l, Database(3N), DBobject (3N), Query(3N)

- 387- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.22 RawColumn

NAME

 RawColumn - wrapper class for Oracle LONG column datatype

SYNOPSIS

 #include <nora/RawColumn.h>

DESCRIPTION

 The RawColumn class provides an interface to Oracle columns
defined as type "raw." At run-time it is usually bound to specific
column and assumes information and data related to the column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use
of the Dual class provides the opportunity to directly instantiate
this type of object.

 RawColumn(Table* t, unsigned length, char* name, Instantiation
of a RawColumn object requires an associated table. The length
parameter determines the size of the object's contents and should
correspond to the schema definition. The name parameter should
also match the name of the database column and the (optional)
 value parameter initializes the object's contents.

 RawColumn(Table* t, RawColumn* rc)" Copy constructor

MEMBER FUNCTIONS

 const char* contents(boolean)
 This function returns a string containing thename and value of the
object. The optional paramater determines whether the output
follows the CDF standard and defaults to true if not given.

 int oratype()
 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

- 388- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 void operator= (const char*)
 Assignment operation used to set the value of the object.

 void assign_value(const char*)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_char_value(const char*)
 Alternatvie means of assignment. Used to set the value of the
object.

 unsigned length()
 Returns information about the length of the objectUs contents.

SEE ALSO

 Column (3N), Dual (3N), Table(3N), QueryResult(3N)

- 389- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.23 Query

NAME

 Query - abstract base class for Query classes

SYNOPSIS

 #include <nora/Query.h>

DESCRIPTION

 The Query class is a base class from which different types of
query structures can be constructed. Derived classes have specific
capabilities needed to initiate queries against an Oracle database.

CONSTRUCTORS

 The constructor for the Query class is protected preventing direct
instantiation. Derived classes must be careful to define the count()
function which is the only "pure" virtual function.

MEMBER FUNCTIONS

 int ora_error_val()
 Returns the specific Oracle error code that was generated by the
most recent error.

 void bind_column(unsigned col, char* buf, unsigned bufl)
 Bind the specified column from the select list to a memory
location. The buf and bufl parameters indicate the address and size
of the memory allocation.

 void bind_column(unsigned col, unsigned* buf)
 Bind the specified column from the select list to a memory
location. The buf pointer refers to a memory address that would
contain integer data (i.e. Number-Column.)

 void bind_column(unsigned col, float* buf)
 Bind the specified column from the select list to a memory
location. The buf pointer refers to a memory address that would
contain float data (i.e. FloatColumn.)

 void bind_columns(Table* t, unsigned& query_pos)
 Bind the columns in the specified Table based upon the position in
the query (SELECT) statement.

- 390- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 void bind_values(Table* t, unsigned& query_pos)
 Bind the return values from an Oracle table fetch to the
appropriate Table columns.

 boolean next()
 Fetch the next row corresponding to the query. Returns
information about whether the fetch succeeded.

 unsigned count()
 Returns the number of rows that will be returned.

 boolean evaluate()
 Trigger all of the contained objects to generate their SQL segents
and send the result to Orace for parsing. Information about the
success of the parsing operation is returned.

 const char* sql_string()
 Returns a string containing the generated SQL.

PROTECTED MEMBER FUNCTIONS

 void bind(unsigned col, void* buf, unsigned bufl,

 unsigned buftype = NULL_STRING)
 Low-level interface to Oracle bind routine.

 unsigned count_tokens(char* token)
 Returns information about the number of columns in the select
list.

 void execute()
 Initiate routines to begin query.

 void restart()
 Cancel an outstanding query (if one exists) and restart.

 void abort()
 Cancel an outstanding query (if one exists.)

SEE ALSO

 DBObject (3N), Table (3N)

- 391- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.1.3.24 NumberColumn

NAME

 NumberColumn - wrapper class for Oracle INTEGER
(NUMBER)
 column datatype

SYNOPSIS

 #include <nora/NumberColumn.h>

DESCRIPTION

 The NumberColumn class provides an interface to Oracle
columns defined as type "integer." At run-time it is usually bound
to specific column and assumes information and data related to the
column.

CONSTRUCTORS

 In almost all cases, objects of this type are created as a result of
creating another object; i.e. Table or QueryResult. However, use of
the Dual class provides the opportunity to directly instantiate this
type of object. Instantiation of a NumberColumn object requires an
associated table. The table should have a column consistent with
the type of this object (NUMBER.)

 NumberColumn(Table* t, char* db_col_ref, short value)
 The name parameter should match the name of the database
column and the (optional) value parameter initializes the object's
contents.

 NumberColumn(Table* t, char* db_col_ref, int value)
 The name parameter should match the name of the database
column and the (optional) value parameter initializes the object's
contents.

 NumberColumn(Table* t, char* db_col_ref, long value)
 The name parameter should match the name of the database
column and the (optional) value parameter initializes the object's
contents.

 NumberColumn(Table* t, NumberColumn* nc)
 Copy constructor

MEMBER FUNCTIONS

 const char* contents(boolean)
 This function returns a string containing the name and value of the

- 392- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

object. The optional parameter determines whether the output
follows the CDF standard and defaults to true if not given.

 int oratype()
 Returns information about the type of data contained in the object.
This is useful when working with Column objects.

 const char* value()
 Returns a string containing the current value of this object.

 short short_value()
 Returns the value of the object's contents.

 int int_value()
 Returns the value of the object's contents.

 long long_value()
 Returns the value of the object's contents.

 const char* db_value()
 Used by other NORA objects for use with Oracle-specific
operations.

 void* address()
 Used by other NORA objects for use with Oracle-specific
operations.

 void assign_value(const char*)
 Used to set the value of the object.

 void assign_value(short)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_value(int)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_value(long)
 Alternative means of assignment. Used to set the value of the
object.

 void assign_char_value(const char*)
 Alternative means of assignment. Used to set the value of the
object.

 unsigned length()
 Returns information about the length of the objectUs contents.

SEE ALSO: Column (3N), Query (3N)

- 393- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2 NARQ Library Principles

The NARQ library consists entirely of a suite of generated C++
code derived from a set of definitions describing the structure of
the database schema. At present, each definition is the equivalent
of a single database table, but this is only a matter of the GATEC
implementation and does not represent a limitation of the library
implementation. The additional benefits of this database-neutral
arrangement is the ability to regenerate a complete interface for
new database definitions as well as the ability to provide additional
capabilities to selected objects by enhancing the C++ code
generator.

In its current form, there is a three-step process in order to
transition from static-file definition to generated C++ source; .FBI
file -> database representation -> code generator. The net result is
the NORA library and associated header files. The remainder of
this section describes the specifics that characterize each step.

3.2.1 NARQ Library Generation

.FBI Files

The Field-Binding Interface (FBI) is the portable ASCII
representation of a NARQ library object. The definition of an FBI
file is similar to the structure of a C++ header file though different
keywords are used. Figure 3-1 provides the current definition of an
FBI file.

// Definitions required for object (optionally SQL) generation

Object <ObjectName>::[DatabaseTableName] {
Relationships:
 // singular reference (one to one)
 Object <reference_object_name>(<exported_name>[,<exportedReference>]) ;

 // multiple reference (one to many)
 Objects <reference_object_name>(<exported_name>[,<exported_reference>]) ;

 // NOTE: a single name within parentheses indicates that the names are
 // identical for each object

 // Derived relationship (sub-classing)
 IsA <parent_object_name>(<member_name>, <base_member_name>) ;

- 394- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Exports:
 <exportedName> [ReadOnly]

Members:
 function:
 [virtual] <function_name>([<function_parameter>],{<function_parameter>}) ;
 key:
 <member_name>::<table_name>.<column_name>
 data:
 <member_name>::<table_name>.<column_name>
} ;

Figure 3-1. FBI definition.

Figure 3-2 provides a sample of an existing file. In this case, the
interface is the the Buyer database table (which will be used later
in the Example code section.)

Object Buyer {
Relationships:

Objects Acquisition(BuyerID, AssignedBuyer);
Objects BuyerAssignment(BuyerID);

Exports:
BuyerID

Members:
key:

number LocalSystemID::Buyer.LocalSystemID
char BuyerID[BUYERID]::BuyerID.BuyerID
char LastName[PER02]::BuyerID.LastName
char FirstName[PER02]::BuyerID.FirstName
char MiddleInitial[MINITIAL]::BuyerID.MiddleInitial
char PhoneNumber[PER04]::BuyerID.PhoneNumber
char EMailAddress[PER04]::BuyerID.EMailAddress
char LeadStatus[BOOLEAN_VALUE]::BuyerID.LeadStatus
char Download[BOOLEAN_VALUE]::BuyerID.Download

}

Figure 3-2. FBI definition of the Buyer object.

In the above definition, it can quickly be discerned that the
definition is broken into three distinct segments; Relationships,
Exports and Members.

The Relationships section is a fairly application-specific area and
identifies related objects, “Objects”, (or a singular object,
“Object”). In the above example, it can be seen that a Buyer object
can have a one-to-many relationship with an Acquisition object.
Contained in parentheses is the basis of the relationship, or in SQL
terms, the join relationship. The first name in parentheses is the
name of the local object member name. The second name is the
name of the external object’s point of relation. If the two names are

- 395- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

identical, it is not necessary. This is evidenced in the definition of
the BuyerAssignment relationship. If multiple relationships exist
between two objects, multiple definitions are allowed. An
additional relationship, IsA, is also allowed. The IsA relationship
allows for sub-classing relationships. The current GATEC
implementation does not make use of this relationship.

The Exports section is used to effectively hide or limit the access
of the key or data members defined in the third section. The current
source generator has had this capability removed, but the definition
has been retained. The design intent was to only generate
read/write access functions to members defined in this section. The
definition also allows for a “ReadOnly” qualifier that would signal
the source generator to only provide read access functions for those
members with the ReadOnly qualifier. Taken a step further,
additional qualifiers could be added that allow only access to
certain groups or classes of users.

The Members section can itself be separated into three separate
segment. The first segment is the function segment and is entirely
optional. The intent of the Function segment relates to the IsA
relationship defined in the Relationships section. However, for the
most part it is intended to provide a placeholder for specialized
functions for an object that are inappropriate for the code
generator. The key segment is required and must have at least one
contained definition. The definitions in this section are almost
exclusively distinguished as the key values upon which database
indexes would be constructed. A definition in the key segment (and
the data segment as well) is a mapping between the object and the
database definition. (Refer to the data segment, following, for
additional detail). As part of the code generation, the definition
also provides some convenience function for both internal and
programmatic use. The third segment, the data segment, is used to
map the remaining database columns to the object. At a minimum,
database columns which require values should be included. It is not
necessary to include all database columns and is an effective way
to exclude potentially sensitive columns from library access. The
definition itself consists of two parts separated by a double colon.
The first half is the local object definition; type, name and field
size if a character type. The field size, in square brackets, can be
given as a numeric value or as a predefined variable. These
variables are defined elsewhere and are resolved when the database
representation is generated. The second part of the definition is the
database table name and column name to which the object is to be
mapped. Part of the original design specified that the right hand
side did not have to map to a database reference but could also
resolve to a memory space for user applications. Nonetheless, this
ability is missing from both the specification and the
implementation.

- 396- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

The following sections describe each .FBI file used in the GATEC
2 system.

3.2.1.1 Acquisition Object

Object Acquisition {
Relationships:

Object Buyer(AssignedBuyer, BuyerID);
Object HoldStatus(HoldStatus, Status);
Objects BCASAward(UTNNumber);
Objects Document(UTNNumber);

Exports:
UTNNumber
HoldStatus
AssignedBuyer
RFQNumber

Members:
key:

char UTNNumber[UTNNUMBER]::Acquisition.UTNNumber
data:

char RFQNumber[RFQNUMBER]::Acquisition.RFQNumber
char SolicitationNumber[7]::Acquisition.SolicitationNumber
char SiteID[SITENUMBER]::Acquisition.SiteID
char DPASPriority[REF02]::Acquisition.DPASPriority
char InternalOrderNumber[REF02]::Acquisition.InternalOrderNumber
char PurchaseReqNumber[REF02]::Acquisition.PurchaseReqNumber
char AssignedBuyer[BUYERID]::Acquisition.AssignedBuyer
char HoldStatus[HOLD_STATUS]::Acquisition.HoldStatus
dbDate HoldPeriod::Acquisition.HoldPeriod
char ReviewStatus[REVIEW_STATUS]::Acquisition.ReviewStatus
char Priority[2]::Acquisition.Priority

}

- 397- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.2 Award Object

Object Award {
Relationships:

Object AwardAcknowledgement(Acknowledgement, AcknowledgementType);
Object OrganizationalEntity(BusEntityType, EntityIDCode);
Object Currency(BuyerCurrencyCode, CurrencyCode);
IsA Document(DocumentID);
Object Contact(FirstContactID, ContactID);
Object AwardPurchaseType(PurchaseType);
Object Contact(SecondContactID, ContactID);
Object Currency(SellerCurrencyCode, CurrencyCode);
Object Contact(ThirdContactID, ContactID);

Exports:
BuyerCurrencyCode
SellerCurrencyCode
BusEntityType
ThirdContactID
FirstContactID
PurchaseType
SecondContactID
Acknowledgement
DocumentID

Members:
key:

number DocumentID::Award.DocumentID
data:

char PurchaseType[BEG02]::Award.PurchaseType
char PurchaseOrderNumber[BEG03]::Award.PurchaseOrderNumber
char CallDeliveryOrderNumber[BEG04]::Award.CallDeliveryOrderNumber
dbDate EffectiveDate::Award.EffectiveDate
char Acknowledgement[BEG07]::Award.Acknowledgement
char AwardDescription[NTE02]::Award.AwardDescription
char BuyerCurrencyCode[CUR02]::Award.BuyerCurrencyCode
double BuyerExchangeRate::Award.BuyerExchangeRate
dbDate BuyerRateEffective::Award.BuyerRateEffective
dbDate BuyerRateExpires::Award.BuyerRateExpires
char SellerCurrencyCode[CUR02]::Award.SellerCurrencyCode
double SellerExchangeRate::Award.SellerExchangeRate
dbDate SellerRateEffective::Award.SellerRateEffective
dbDate SellerRateExpires::Award.SellerRateExpires
char InternalOrderNumber[REF02]::Award.InternalOrderNumber
char PurchaseReqNumber[REF02]::Award.PurchaseReqNumber
char DPASPriority[REF02]::Award.DPASPriority
char AcctgNAppropData[REF02]::Award.AcctgNAppropData
char AcctgClassRefNumber[REF02]::Award.AcctgClassRefNumber
char QuoteReferenceNumber[REF02]::Award.QuoteReferenceNumber
dbDate QuoteReferenceDate::Award.QuoteReferenceDate
char RFQReferenceNumber[BQR02]::Award.RFQReferenceNumber
dbDate RFQReferenceDate::Award.RFQReferenceDate

- 398- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

dbDate RequiredDeliveryDate::Award.RequiredDeliveryDate
char BusEntityType[N101]::Award.BusEntityType
char BusEntityName[N102]::Award.BusEntityName
number BusEntityVendorID::Award.BusEntityVendorID
char BusEntityDept[N201]::Award.BusEntityDept
char BusEntityAddress[N301]::Award.BusEntityAddress
char BusEntityCity[N401]::Award.BusEntityCity
char BusEntityState[N402]::Award.BusEntityState
char BusEntityZIP[N403]::Award.BusEntityZIP
char BidNumber[REF02]::Award.BidNumber
char BuyersOfficeSymbol[REF02]::Award.BuyersOfficeSymbol
char CriticalityDesignator[REF02]::Award.CriticalityDesignator
char FirstContactID[CONTACTID]::Award.FirstContactID
char SecondContactID[CONTACTID]::Award.SecondContactID
char ThirdContactID[CONTACTID]::Award.ThirdContactID

}

- 399- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.3 AwardLineItem Object

Object AwardLineItem {
Relationships:

Object Document(DocumentID);
Object FederalStockClass(FedStockClass, FedStockClassID);
IsA LineItem(ItemNumber);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);
Object UnitPriceCodeBasis(UnitPriceBasis);

Exports:
FedStockClass
ItemNumber
UnitPriceBasis
UnitOfMeasure

Members:
key:

number DocumentID::AwardLineItem.DocumentID
char ItemNumber[PO101]::AwardLineItem.ItemNumber

data:
char DPASPriority[REF02]::AwardLineItem.DPASPriority
char InternalOrderNumber[REF02]::AwardLineItem.InternalOrderNumber
char PurchaseReqNumber[REF02]::AwardLineItem.PurchaseReqNumber
short SingleDeliveryDate::AwardLineItem.SingleDeliveryDate
dbDate DeliveryDate::AwardLineItem.DeliveryDate
double TotalLineAmount::AwardLineItem.TotalLineAmount
double Quantity::AwardLineItem.Quantity
char UnitOfMeasure[PO103]::AwardLineItem.UnitOfMeasure
double UnitPrice::AwardLineItem.UnitPrice
char UnitPriceBasis[PO105]::AwardLineItem.UnitPriceBasis
char FedStockClass[4]::AwardLineItem.FedStockClass
char StdIndustrialClass[PO109]::AwardLineItem.StdIndustrialClass
char PartListIncluded[1]::AwardLineItem.PartListIncluded
char VariationPercent[2]::AwardLineItem.VariationPercent
char PurchaseVariation[1]::AwardLineItem.PurchaseVariation
char BuyerName[N102]::AwardLineItem.BuyerName
char BuyerCageCode[N104]::AwardLineItem.BuyerCageCode
char BuyerDept[N201]::AwardLineItem.BuyerDept
char BuyerAddress[N301]::AwardLineItem.BuyerAddress
char BuyerCity[25]::AwardLineItem.BuyerCity
char BuyerState[N402]::AwardLineItem.BuyerState
char BuyerZIP[N403]::AwardLineItem.BuyerZIP
char ShipToName[N102]::AwardLineItem.ShipToName
number ShipToVendorID::AwardLineItem.ShipToVendorID
char ShipToDept[N201]::AwardLineItem.ShipToDept
char ShipToAddress[N301]::AwardLineItem.ShipToAddress
char ShipToCity[25]::AwardLineItem.ShipToCity
char ShipToState[N402]::AwardLineItem.ShipToState
char ShipToZIP[N403]::AwardLineItem.ShipToZIP
char BillToName[N102]::AwardLineItem.BillToName
number BillToVendorID::AwardLineItem.BillToVendorID

- 400- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

char BillToDept[N201]::AwardLineItem.BillToDept
char BillToAddress[N301]::AwardLineItem.BillToAddress
char BillToCity[25]::AwardLineItem.BillToCity
char BillToState[N402]::AwardLineItem.BillToState
char BillToZIP[N403]::AwardLineItem.BillToZIP

- 401- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.4 AwardPurchaseType Object

Object AwardPurchaseType {
Relationships:

Objects Award(PurchaseType);
Exports:

PurchaseType
Members:

key:
char PurchaseType[BEG02]::AwardPurchaseType.PurchaseType

data:
}

- 402- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.5 BCASAward Object

Object BCASAward {
Relationships:

Object CompetitionCode(CompetitionCode, Competitive);
Object NegotiationAuthority(NegotiationAuthority, Authority);
Object Acquisition(UTNNumber);

Exports:
UTNNumber
CompetitionCode
NegotiationAuthority

Members:
key:

char UTNNumber[UTNNUMBER]::BCASAward.UTNNumber
data:

char VendorCode[VENDOR_CODE]::BCASAward.VendorCode
char NegotiationAuthority[NEGO_AUTH]::BCASAward.NegotiationAuthority
char CompetitionCode[COMP_CODE]::BCASAward.CompetitionCode
char SolicitationNumber[7]::BCASAward.SolicitationNumber
char PIIN[PIIN_LEN]::BCASAward.PIIN
char OrderStatements[30]::BCASAward.OrderStatements
char ConfirmWith[15]::BCASAward.ConfirmWith
char ContractRefNumber[30]::BCASAward.ContractRefNumber

}

- 403- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.6 Buyer Object

Object Buyer {
Relationships:

Objects Acquisition(BuyerID, AssignedBuyer);
Objects BuyerAssignment(BuyerID);

Exports:
BuyerID

Members:
key:

number LocalSystemID::Buyer.LocalSystemID
data:

char BuyerID[BUYERID]::Buyer.BuyerID
char LastName[PER02]::Buyer.LastName
char FirstName[PER02]::Buyer.FirstName
char MiddleInitial[MINITIAL]::Buyer.MiddleInitial
char PhoneNumber[PER04]::Buyer.PhoneNumber
char EMailAddress[PER04]::Buyer.EMailAddress
char LeadStatus[BOOLEAN_VALUE]::Buyer.LeadStatus
char Download[BOOLEAN_VALUE]::Buyer.Download

}

- 404- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.7 BuyerAssignment Object

Object BuyerAssignment {
Relationships:

Object Buyer(BuyerID);
Object FederalStockClass(FedStockClass, FedStockClassID);

Exports:
BuyerID
FedStockClass

Members:
key:

char BuyerID[BUYERID]::BuyerAssignment.BuyerID
data:

char FedStockClass[4]::BuyerAssignment.FedStockClass
}

- 405- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.8 BuyerNote Object

Object BuyerNote {
Relationships:

Object Vendor(VendorID, VendorID);
Object Document(DocumentID, DocumentID);

Exports:
DocumentID
VendorID

Members:
key:

number DocumentID::BuyerNote.DocumentID
data:

long NoteNumber::BuyerNote.NoteNumber
char Note[MAX_TEXT]::BuyerNote.Note
number VendorID::BuyerNote.VendorID
dbDate InclusionDate::BuyerNote.InclusionDate

}

- 406- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.9 CancellationCode Object

Object CancellationCode {
Relationships:

Objects SolicitationHistory(CancelCode, CancellationCode);
Exports:

CancelCode
Members:

key:
char CancelCode[CNX_CODE]::CancellationCode.CancelCode

data:
}

- 407- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.10 Clause

Object Clause {
Relationships:

Object ClauseCertification(ClauseCertification, RefNumQualifier);
IsA RelatedPaperwork(PaperworkID);

Exports:
PaperworkID
ClauseCertification

Members:
key:

number PaperworkID::Clause.PaperworkID
data:

char ClauseCertification[N901]::Clause.ClauseCertification
char ClauseRefNumber[N902]::Clause.ClauseRefNumber
char ClauseSource[N903]::Clause.ClauseSource
char ClauseExplanation[N903]::Clause.ClauseExplanation

}

- 408- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.11 ClauseCertifiication

Object ClauseCertification {
Relationships:

Objects Clause(RefNumQualifier, ClauseCertification);
Exports:

RefNumQualifier
Members:

key:
char RefNumQualifier[N901]::ClauseCertification.RefNumQualifier

data:
}

- 409- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.12 Commuinicator Object

Object Communicator {
Relationships:

Object Contact(FirstContactID, ContactID);
Object Contact(SecondContactID, ContactID);
Object Contact(ThirdContactID, ContactID);

Exports:
ThirdContactID
CommunicatorID
SecondContactID
FirstContactID

Members:
key:

long CommunicatorID::Communicator.CommunicatorID
data:

char LastName[N201]::Communicator.LastName
char FirstName[N102]::Communicator.FirstName
char Address[N301]::Communicator.Address
char City[N401]::Communicator.City
char State[N402]::Communicator.State
char ZIP[N403]::Communicator.ZIP
char FirstContactID[CONTACTID]::Communicator.FirstContactID
char SecondContactID[CONTACTID]::Communicator.SecondContactID
char ThirdContactID[CONTACTID]::Communicator.ThirdContactID

}

- 410- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.13 CompetitionCode Object

Object CompetitionCode {
Relationships:

Objects BCASAward(Competitive, CompetitionCode);
Objects SolicitationHistory(Competitive, CompetitionCode);

Exports:
Competitive

Members:
key:

char Competitive[COMP_CODE]::CompetitionCode.Competitive
data:

}

- 411- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.14 Contact Object

Object Contact {
Relationships:

Object PreferredAccess(PreferredAccess, CommNumQual);
Exports:

ContactID
PreferredAccess

Members:
key:

char ContactID[CONTACTID]::Contact.ContactID
data:

char Name[PER02]::Contact.Name
char PreferredAccess[PER03]::Contact.PreferredAccess
char PhoneNumber[PER04]::Contact.PhoneNumber
char FaxNumber[PER04]::Contact.FaxNumber
char EMailAddress[PER04]::Contact.EMailAddress

}

- 412- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.15 ControlStandards Object

Object ControlStandards {
Relationships:

Object InterchangeControlHdr(Standard, InterchangeCtlStds)
Exports:
Members:

key:
char Standard[I10]::ControlStandards.ControlStandard

data:
char Definition[255]::ControlStandards.Definition

}

3.2.1.16 ControlVersion Object

Object ControlVersion {
Relationships:

Object InterchangeControlHdr(VersionNumber, InterchangeVersion)
Exports:
Members:

key:
char VersionNumber[I11]::ControlVersion.ControlVersion

data:
char Definition[255]::ControlVersion.Definition
char DMNumber[8]::ControlVersion.DMNumber

}

3.2.1.17 Currency Object

Object Currency {
Relationships:

Objects SolicitationHistory(BCASCurrency, Currency);
Objects Award(CurrencyCode, BuyerCurrencyCode);
Objects Award(CurrencyCode, SellerCurrencyCode);
Objects Quote(CurrencyCode);

Exports:
CurrencyCode
BCASCurrency

Members:
key:

char CurrencyCode[CUR02]::Currency.CurrencyCode
data:

char BCASCurrency[CUR_CODE]::Currency.BCASCurrency
}

- 413- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.18 DeliverySchedule Object

Object DeliverySchedule {
Relationships:

IsA RelatedPaperwork(PaperworkID);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);

Exports:
PaperworkID
UnitOfMeasure

Members:
key:

number PaperworkID::DeliverySchedule.PaperworkID
data:

char LineItemNumber[4]::DeliverySchedule.LineItemNumber
double ScheduledQuantity::DeliverySchedule.ScheduledQuantity
char UnitOfMeasure[SCH02]::DeliverySchedule.UnitOfMeasure
dbDate ScheduledDate::DeliverySchedule.ScheduledDate

}

- 414- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.19 Document Object

Object Document {
Relationships:

Objects BuyerNote(DocumentID);
Objects DocumentAddressee(DocumentID);
Objects LineItem(DocumentID);
Objects RelatedPaperwork(DocumentID);
Object DocumentStatus(DocumentStatus, Status);
Object DocumentType(DocumentType, TransactionSetID);
Object DocumentVersion(DocumentVersion, VersionID);
Object ReviewStatus(ReviewStatus, Status);
Object Acquisition(UTNNumber);

Exports:
UTNNumber
DocumentType
ReviewStatus
DocumentVersion
DocumentStatus
DocumentID

Members:
key:

number DocumentID::Document.DocumentID
data:

char UTNNumber[UTNNUMBER]::Document.UTNNumber
char TransactionNumber[TRANSACTION]::Document.TransactionNumber
char DocumentType[ST01]::Document.DocumentType
char DocumentVersion[VERSION_ID]::Document.DocumentVersion
char X12ReferenceNumber[TRANSACTION]::Document.X12ReferenceNumber
dbDate EffectiveDate::Document.EffectiveDate
dbDate ExpirationDate::Document.ExpirationDate
char DocumentStatus[EL_353]::Document.DocumentStatus
char ReviewStatus[REVIEW_STATUS]::Document.ReviewStatus

}

- 415- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.20 DocumentAddressee Object

Object DocumentAddressee {
Relationships:

Object Vendor(VendorID);
Object Document(DocumentID);

Exports:
DocumentID
VendorID

Members:
key:

number DocumentID::DocumentAddressee.DocumentID
number VendorID::DocumentAddressee.VendorID

data:
dbDate TransmittalDate::DocumentAddressee.TransmittalDate

}

- 416- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.23 DocumentType Object

Object DocumentType {
Relationships:

Objects Document(TransactionSetID, DocumentType);
Objects LineItem(TransactionSetID, DocumentType);

Exports:
TransactionSetID

Members:
key:

char TransactionSetID[ST01]::DocumentType.TransactionSetID
data:

char TypeDescription[MAX_TEXT]::DocumentType.TypeDescription
}

- 417- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.24 DocumentVersion Object

Object DocumentVersion {
Relationships:

Objects Document(VersionID, DocumentVersion);
Object DocumentVersionType(VersionType);

Exports:
VersionID
VersionType

Members:
key:

char VersionID[VERSION_ID]::DocumentVersion.VersionID
data:

char VersionType[MAX_CODE]::DocumentVersion.VersionType
dbDate VersionDate::DocumentVersion.VersionDate

}

- 418- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.25 DocumentVersionType Object

Object DocumentVersionType {
Relationships:

Objects DocumentVersion(VersionType);
Exports:

VersionType
Members:

key:
char VersionType[MAX_CODE]::DocumentVersionType.VersionType

data:
char VersionDescription[MAX_TEXT]::DocumentVersionType.VersionDescription

}

- 419- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.26 DownloadStockClass Object

Object DownloadStockClass {
Relationships:
Exports:

FedStockClass
Members:

key:
char FedStockClass[5]::DownloadStockClass.FedStockClass

}

3.2.1.27 FOBAcceptancePoint Object

Object FOBAcceptancePoint {
Relationships:

Objects FreeOnBoard(LocationQual, FOBAcceptancePoint);
Objects FreeOnBoard(LocationQual, FOBType);

Exports:
LocationQual

Members:
key:

char LocationQual[EL_309]::FOBAcceptancePoint.LocationQual
data:

}

- 420- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.28 FederalStockClass Object

Object FederalStockClass {
Relationships:

Objects AwardLineItem(FedStockClassID, FedStockClass);
Objects BuyerAssignment(FedStockClassID, FedStockClass);
Objects LineItem(FedStockClassID, FedStockClass);
Objects QuoteLineItem(FedStockClassID, FedStockClass);
Objects ReqForQuoteLineItem(FedStockClassID, FedStockClass);

Exports:
FedStockClassID

Members:
key:

char FedStockClassID[4]::FederalStockClass.FedStockClassID
char Suffix[3]::FederalStockClass.Suffix

data:
char ClassDescription[MAX_TEXT]::FederalStockClass.ClassDescription

}

- 421- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.29 FreeOnBoard Object

Object FreeOnBoard {
Relationships:

Object FOBAcceptancePoint(FOBAcceptancePoint, LocationQual);
Object FOBAcceptancePoint(FOBType, LocationQual);
IsA RelatedPaperwork(PaperworkID);

Exports:
FOBAcceptancePoint
FOBType
PaperworkID

Members:
key:

number PaperworkID::FreeOnBoard.PaperworkID
data:

char FOBType[FOB02]::FreeOnBoard.FOBType
char FOBDescription[FOB03]::FreeOnBoard.FOBDescription
char FOBAcceptancePoint[FOB06]::FreeOnBoard.FOBAcceptancePoint
char

FOBAlternateInspection[BOOLEAN_VALUE]::FreeOnBoard.FOBAlternateInspection
char FOBInspectionPoint[FOB07]::FreeOnBoard.FOBInspectionPoint

}

3.2.1.30 FunctionalAck Object

Object FunctionalAck {
Relationships:

IsA Document(DocumentID);
Exports:

DocumentID
Members:

key:
number DocumentID::FunctionalAck.DocumentID

data:
number GroupControlNumber::FunctionalAck.GroupControlNumber
char FunctionalGroupAckCode[1]::FunctionalAck.FunctionalGroupAckCode

}

- 422- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.31 FunctionalGroupHdr Object

Object FunctionalGroupHdr {
RelationShips:
Exports:

CageCode
Members:

key:
char CageCode[N104]::FunctionalGroupHdr.CageCode

data:
char ApplicationSendersCode[15]::FunctionalGroupHdr.ApplicationSendersCode
char ApplicationReceiversCode[15]::FunctionalGroupHdr.ApplicationReceiversCode
dbDate GroupDate::FunctionalGroupHdr.GroupDate
dbTime GroupTime::FunctionalGroupHdr.GroupTime
char GroupControlNumber[9]::FunctionalGroupHdr.GroupControlNumber
char ResponsibleAgencyCode[2]::FunctionalGroupHdr.ResponsibleAgencyCode
char VersionReleaseCode[12]::FunctionalGroupHdr.VersionReleaseCode

}

3.2.1.32 FundCode Object

Object FundCode {
Relationships:
Exports:

Fund
Members:

key:
char Fund[FUND_CODE]::FundCode.Fund

data:
double DiscretionPercentage::FundCode.DiscretionPercentage

}

- 423- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.33 GSDefaults Object

Object GSDefaults {
Relationships:
Exports:
Members:

key:
char DocumentType[4]::GSDefaults.DocumentType

data:
char FunctionalID[2]::GSDefaults.FunctionalID
char ApplicationSender[15]::GSDefaults.ApplicationSender
char ApplicationReceiver[15]::GSDefaults.ApplicationReceiver
dbDate GroupDate::GSDefaults.GroupDate
dbDate GroupTime::GSDefaults.GroupTime
long GroupControlNumber::GSDefaults.GroupControlNumber
char ResponsibleAgency[2]::GSDefaults.ResponsibleAgency
char InterchangeVersion[12]::GSDefaults.InterchangeVersion

}

- 424- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.34 HoldStatus Object

Object HoldStatus {
Relationships:

Objects Acquisition(Status, HoldStatus);
Exports:

Status
Members:

key:
char Status[HOLD_STATUS]::HoldStatus.Status

data:
}

- 425- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.35 Holidays Object

Object Holidays {
Relationships:
Exports:
Members:

key:
dbDate Holiday::Holidays.Holiday

data:
char Description[255]::Holidays.Description

}

- 426- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.36 ISAAuthQualifier Object

Object ISAAuthQualifier {
Relationships:

Object InterchangeControlHdr(AuthQualifier, AuthorizationID)
Exports:

AuthQualifier
Members:

key:
char AuthQualifier[I01]::ISAAuthQualifier.AuthQualifier

data:
char Definition[255]::ISAAuthQualifier.Definition

}

3.2.1.37 ISADefaults Object

Object ISADefaults {
Relationships:
Exports:
Members:

key:
char DocumentType[4]::ISADefaults.DocumentType

data:
char AuthorizationID[2]::ISADefaults.AuthorizationID
char Authorization[10]::ISADefaults.Authorization
char SecurityID[2]::ISADefaults.SecurityID
char Security[10]::ISADefaults.Security
char SenderIDQualifier[2]::ISADefaults.SenderIDQualifier
char SenderID[15]::ISADefaults.SenderID
char ReceiverIDQualifier[2]::ISADefaults.ReceiverIDQualifier
char ReceiverID[15]::ISADefaults.ReceiverID
dbDate InterchangeDate::ISADefaults.InterchangeDate
dbTime InterchangeTime::ISADefaults.InterchangeTime
char InterchangeCtlStds[1]::ISADefaults.InterchangeCtlStds
char InterchangeVersion[5]::ISADefaults.InterchangeVersion
long ControlNumber::ISADefaults.ControlNumber
char AckRequested[1]::ISADefaults.AckRequested
char TestIndicator[1]::ISADefaults.TestIndicator
char SubElementSeparator[1]::ISADefaults.SubElementSeparator
char ElementSeparator[1]::ISADefaults.ElementSeparator

}

- 427- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.38 ISAInterchangeQualifier Object

Object ISAInterchangeQualifier {
Relationships:

Object InterchangeControlHdr(InterchangeQualifier, InterchangeID)
Exports:
Members:

key:
char InterchangeQualifier[I05]::ISAInterchangeQualifier.InterchangeQualifier

data:
char Definition[255]::ISAInterchangeQualifier.Definition

}

- 428- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.39 InterchangeControlHdr Object

Object InterchangeControlHdr {
Relationships:

Object ISAAuthQualifier(AuthorizationID, AuthQualifier)
Object ControlStandards(InterchangeCtlStds, Standard)
Object ControlVersion(InterchangeVersion, VersionNumber)
Object ISAInterchangeQualifier(InterchangeID, InterchangeQualifier)
Object InterchangeRecipient(SenderID, RecipientID)
Object InterchangeRecipient(ReceiverID, RecipientID)

Exports:
Members:

key:
char CageCode[N104]::InterchangeControlHdr.CageCode

data:
char SenderID[I06]::InterchangeControlHdr.SenderID
long ControlNumber::InterchangeControlHdr.ControlNumber
char AuthorizationID[I01]::InterchangeControlHdr.AuthorizationID
char Authorization[I02]::InterchangeControlHdr.Authorization
char SecurityID[I03]::InterchangeControlHdr.SecurityID
char Security[I04]::InterchangeControlHdr.Security
char InterchangeID[I05]::InterchangeControlHdr.InterchangeID
char ReceiverID[I07]::InterchangeControlHdr.ReceiverID
dbDate InterchangeDate::InterchangeControlHdr.InterchangeDate
dbTime InterchangeTime::InterchangeControlHdr.InterchangeTime
char InterchangeCtlStds[I10]::InterchangeControlHdr.InterchangeCtlStds
char InterchangeVersion[I11]::InterchangeControlHdr.InterchangeVersion
char AckRequested[I13]::InterchangeControlHdr.AckRequested
char TestIndicator[I14]::InterchangeControlHdr.TestIndicator
char SubElementSeparator[I15]::InterchangeControlHdr.SubElementSeparator
int FunctionalGroups::InterchangeControlHdr.FunctionalGroups
char AckCode[I17]::InterchangeControlHdr.AckCode
char NoteCode[I18]::InterchangeControlHdr.NoteCode
char ElementSeparator[1]::InterchangeControlHdr.ElementSeparator

}

- 429- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.40 InterchangeRecipient Object

Object InterchangeRecipient {
Relationships:
Exports:

RecipientID
Members:

key:
char RecipientID[I07]::InterchangeRecipient.RecipientID

data:
char RecipientName[255]::InterchangeRecipient.RecipientName

}

3.2.1.41 InvoiceAddress Object

Object InvoiceAddress {
Relationships:
Exports:
Members:

key:
char EntityIDCode[N101]::InvoiceAddress.EntityIDCode

data:
char Name[N102]::InvoiceAddress.Name
char IDCodeQualifier[N103]::InvoiceAddress.IDCodeQualifier
char IDCode[N104]::InvoiceAddress.IDCode
char Department[N201]::InvoiceAddress.Department
char Address[N301]::InvoiceAddress.Address
char City[N401]::InvoiceAddress.City
char State[N402]::InvoiceAddress.State
char ZIP[N403]::InvoiceAddress.ZIP
char Country[N404]::InvoiceAddress.Country

}

- 430- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.42 Item Object

Object Item {
Members:

key:
char StockNumber[15]::Item.StockNumber

data:
char SupNomenInd[1]::Item.SupNomenInd
char ContrInd[1]::Item.ContrInd
char Suffix[2]::Item.Suffix
char UnitOfIssue[2]::Item.UnitOfIssue
char BuyerCode[3]::Item.BuyerCode
char CustomerID[1]::Item.CustomerID
char VariationInQuantity[2]::Item.VariationInQuantity
char AutomaticPurchaseOrder[2]::Item.AutomaticPurchaseOrder
char BrandNameOrSoleSource[2]::Item.BrandNameOrSoleSource
char RecDate[5]::Item.RecDate
char CommodityAssignment[1]::Item.CommodityAssignment
char DateLastAward[5]::Item.DateLastAward
char ManufacturerName[30]::Item.ManufacturerName
char ManufacturerPart[20]::Item.ManufacturerPart
char Nomenclature01[40]::Item.Nomenclature01
char Nomenclature02[40]::Item.Nomenclature02
char Nomenclature03[40]::Item.Nomenclature03
char Nomenclature04[40]::Item.Nomenclature04
char Nomenclature05[40]::Item.Nomenclature05
char Nomenclature06[40]::Item.Nomenclature06

}

- 431- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.43 ItemDetails Object

Object ItemDetails {
Relationships:

Object UnitOfMeasure(LinearUnitOfMeasure, UnitOfMeasureCode);
Object ItemPackageType(PackageType, PackagingCode);
IsA RelatedPaperwork(PaperworkID);
Object UnitOfMeasure(SizeUnitOfMeasure, UnitOfMeasureCode);
Object UnitOfMeasure(VolumeUnitOfMeasure, UnitOfMeasureCode);
Object ItemWeightType(WeightType, WeightQual);
Object UnitOfMeasure(WeightUnitOfMeasure, UnitOfMeasureCode);

Exports:
WeightUnitOfMeasure
WeightType
SizeUnitOfMeasure
PackageType
PaperworkID
LinearUnitOfMeasure
VolumeUnitOfMeasure

Members:
key:

number PaperworkID::ItemDetails.PaperworkID
data:

long ItemsPerUnit::ItemDetails.ItemsPerUnit
double InnerPackSize::ItemDetails.InnerPackSize
char SizeUnitOfMeasure[PO403]::ItemDetails.SizeUnitOfMeasure
char PackageType[PO404]::ItemDetails.PackageType
char WeightType[PO405]::ItemDetails.WeightType
double PackageWeight::ItemDetails.PackageWeight
char WeightUnitOfMeasure[PO407]::ItemDetails.WeightUnitOfMeasure
double GrossVolumePerPack::ItemDetails.GrossVolumePerPack
char VolumeUnitOfMeasure[PO409]::ItemDetails.VolumeUnitOfMeasure
double PackageLength::ItemDetails.PackageLength
double PackageWidth::ItemDetails.PackageWidth
double PackageHeight::ItemDetails.PackageHeight
char LinearUnitOfMeasure[PO413]::ItemDetails.LinearUnitOfMeasure

}

- 432- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.44 ItemPackageType Object

Object ItemPackageType {
Relationships:

Objects ItemDetails(PackagingCode, PackageType);
Exports:

PackagingCode
Members:

key:
char PackagingCode[PO404]::ItemPackageType.PackagingCode

data:
}

- 433- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.45 ItemWeightType Object

Object ItemWeightType {
Relationships:

Objects ItemDetails(WeightQual, WeightType);
Exports:

WeightQual
Members:

key:
char WeightQual[PO405]::ItemWeightType.WeightQual

data:
}

- 434- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.46 LineItem Object

Object LineItem {
Relationships:

Object Document(DocumentID);
Objects Part(DocumentID);
Object DocumentType(DocumentType, TransactionSetID);
Object FederalStockClass(FedStockClass, FedStockClassID);
Objects Part(ItemNumber);
Objects RelatedPaperwork(ItemNumber, LineItemNumber);
Object LineItemStatus(StatusCode);

Exports:
StatusCode
FedStockClass
DocumentType
ItemNumber
DocumentID

Members:
key:

number DocumentID::LineItem.DocumentID
char ItemNumber[PO101]::LineItem.ItemNumber

data:
char DocumentType[ST01]::LineItem.DocumentType
char UnitOfMeasure[PO103]::LineItem.UnitOfMeasure
char FedStockClass[4]::LineItem.FedStockClass
char StdIndustrialClass[PO109]::LineItem.StdIndustrialClass
char SRAN[SRAN_LEN]::LineItem.SRANCode
double Quantity::LineItem.Quantity
char StatusCode[STATUS_LEN]::LineItem.Status

}

- 435- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.47 LineItemStatus Object

Object LineItemStatus {
Relationships:

Objects LineItem(StatusCode);
Exports:

StatusCode
Members:

key:
char StatusCode[STATUS_LEN]::LineItemStatus.StatusCode

data:
}
SimpleObject ListNumbers {
Relationships:
Exports:
Members:

key:
data:

number FiscalYear::ListNumbers.FiscalYear
long CurrentNumber::ListNumbers.CurrentNumber

}

- 436- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.48 Marks Object

Object Marks {
Relationships:

IsA RelatedPaperwork(PaperworkID);
Object MarksQualifier(Qualifier);

Exports:
Qualifier
PaperworkID

Members:
key:

number PaperworkID::Marks.PaperworkID
data:

char Qualifier[MAN01]::Marks.Qualifier
char MarksAndNumbers[MAN02]::Marks.MarksAndNumbers

}

- 437- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.49 MarksQualifier Object

Object MarksQualifier {
Relationships:

Objects Marks(Qualifier);
Exports:

Qualifier
Members:

key:
char Qualifier[MAN01]::MarksQualifier.Qualifier

data:
}

- 438- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.50 MeasurementApplicationCode Object

Object MeasurementApplicationCode {
Relationships:

Objects MeasurementData(Application, ApplicationCode);
Exports:

Application
Members:

key:
char Application[MEA01]::MeasurementApplicationCode.Application

data:
}

- 439- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.51 MeasurementData Object

Object MeasurementData {
Relationships:

Object MeasurementApplicationCode(ApplicationCode, Application);
IsA RelatedPaperwork(PaperworkID);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);

Exports:
ApplicationCode
PaperworkID
UnitOfMeasure

Members:
key:

number PaperworkID::MeasurementData.PaperworkID
data:

char ApplicationCode[MEA01]::MeasurementData.ApplicationCode
char TypeOfMeasurement[MEA02]::MeasurementData.TypeOfMeasurement
double MeasurementValue::MeasurementData.MeasurementValue
char UnitOfMeasure[MEA04]::MeasurementData.UnitOfMeasure
double MinimumValue::MeasurementData.MinimumValue
double MaximumValue::MeasurementData.MaximumValue

}

- 440- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.52 Message Object

Object Message {
Relationships:

IsA Document(DocumentID);
Objects MessageFrom(DocumentID);

Exports:
DocumentID

Members:
key:

number DocumentID::Message.DocumentID
data:

char BuyerID[3]::Message.BuyerID
dbDate MessageDate::Message.MessageDate
char MessageNumber[30]::Message.MessageNumber
char Subject[80]::Message.Subject

}

- 441- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.53 MessageFrom Object

Object MessageFrom {
Relationships:

Object Message(DocumentID);
Exports:

CommunicatorID
DocumentID

Members:
key:

number DocumentID::MessageFrom.DocumentID
long FromIndex::MessageFrom.FromIndex

data:
 number SenderVendorID::MessageFrom.SenderVendorID
 char SenderLastName[N201]::MessageFrom.SenderLastName
 char SenderFirstName[N102]::MessageFrom.SenderFirstName
 char SenderAddress[N301]::MessageFrom.SenderAddress
 char SenderCity[N301]::MessageFrom.SenderCity
 char SenderState[N401]::MessageFrom.SenderState
 char SenderZIP[N403]::MessageFrom.SenderZIP
 char FirstContactID[CONTACTID]::MessageFrom.FirstContactID
 char SecondContactID[CONTACTID]::MessageFrom.SecondContactID
 char ThirdContactID[CONTACTID]::MessageFrom.ThirdContactID
}

- 442- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.54 MessageReference Object

Object MessageReference {
Relationships:
Exports:
Members:

key:
number DocumentID::MessageReference.DocumentID
char SolicitationNumber[7]::MessageReference.SolicitationNumber
char LineItem[4]::MessageReference.LineItem

data:
}

- 443- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.55 MessageTextBody Object

Object MessageTextBody {
Relationships:
Exports:
Members:

key:
number DocumentID::MessageTextBody.DocumentID
long BodyIndex::MessageTextBody.BodyIndex

data:
 char TextBody[MAX_TEXT]::MessageTextBody.TextBody
}

- 444- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.56 MessageTo Object

Object MessageTo {
Relationships:
Exports:

TextID
CommunicatorID

Members:
key:

number DocumentID::MessageTo.DocumentID
long ToIndex::MessageTo.ToIndex

data:
number VendorID::MessageTo.VendorID
char ReceiverLastName[N201]::MessageTo.ReceiverLastName
char ReceiverFirstName[N102]::MessageTo.ReceiverFirstName
char ReceiverAddress[N301]::MessageTo.ReceiverAddress
char ReceiverCity[N301]::MessageTo.ReceiverCity
char ReceiverState[N401]::MessageTo.ReceiverState
char ReceiverZIP[N403]::MessageTo.ReceiverZIP
char FirstContactID[CONTACTID]::MessageTo.FirstContactID
char SecondContactID[CONTACTID]::MessageTo.SecondContactID
char ThirdContactID[CONTACTID]::MessageTo.ThirdContactID

}

- 445- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.57 NegotiationAuthority
Object NegotiationAuthority {
Relationships:

Objects BCASAward(Authority, NegotiationAuthority);
Exports:

Authority
Members:

key:
char Authority[NEGO_AUTH]::NegotiationAuthority.Authority

data:
}

- 446- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.58 Nomenclature Object

Object Nomenclature {
Members:

key:
char StockNumber[15]::Nomenclature.StockNumber

data:
char Nomenclature07[40]::Nomenclature.Nomenclature07
char Nomenclature08[40]::Nomenclature.Nomenclature08
char Nomenclature09[40]::Nomenclature.Nomenclature09
char Nomenclature10[40]::Nomenclature.Nomenclature10
char Nomenclature11[40]::Nomenclature.Nomenclature11
char Nomenclature12[40]::Nomenclature.Nomenclature12
char Nomenclature13[40]::Nomenclature.Nomenclature13
char Nomenclature14[40]::Nomenclature.Nomenclature14
char Nomenclature15[40]::Nomenclature.Nomenclature15
char Nomenclature16[40]::Nomenclature.Nomenclature16
char Nomenclature17[40]::Nomenclature.Nomenclature17
char Nomenclature18[40]::Nomenclature.Nomenclature18
char Nomenclature19[40]::Nomenclature.Nomenclature19
char Nomenclature20[40]::Nomenclature.Nomenclature20
char Nomenclature21[40]::Nomenclature.Nomenclature21
char Nomenclature22[40]::Nomenclature.Nomenclature22
char Nomenclature23[40]::Nomenclature.Nomenclature23
char Nomenclature24[40]::Nomenclature.Nomenclature24
char Nomenclature25[40]::Nomenclature.Nomenclature25
char Nomenclature26[40]::Nomenclature.Nomenclature26
char Nomenclature27[40]::Nomenclature.Nomenclature27
char Nomenclature28[40]::Nomenclature.Nomenclature28
char Nomenclature29[40]::Nomenclature.Nomenclature29
char Nomenclature30[40]::Nomenclature.Nomenclature30
char Nomenclature31[40]::Nomenclature.Nomenclature31
char Nomenclature32[40]::Nomenclature.Nomenclature32
char Nomenclature33[40]::Nomenclature.Nomenclature33
char Nomenclature34[40]::Nomenclature.Nomenclature34
char Nomenclature35[40]::Nomenclature.Nomenclature35
char Nomenclature36[40]::Nomenclature.Nomenclature36
char Nomenclature37[40]::Nomenclature.Nomenclature37
char Nomenclature38[40]::Nomenclature.Nomenclature38
char Nomenclature39[40]::Nomenclature.Nomenclature39
char Nomenclature40[40]::Nomenclature.Nomenclature40
char Nomenclature41[40]::Nomenclature.Nomenclature41
char Nomenclature42[40]::Nomenclature.Nomenclature42
char Nomenclature43[40]::Nomenclature.Nomenclature43
char Nomenclature44[40]::Nomenclature.Nomenclature44
char Nomenclature45[40]::Nomenclature.Nomenclature45
char Nomenclature46[40]::Nomenclature.Nomenclature46
char Nomenclature47[40]::Nomenclature.Nomenclature47
char Nomenclature48[40]::Nomenclature.Nomenclature48

}

- 447- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.59 Note Object

Object Note {
Relationships:

Object NoteStatus(Status);
Exports:

Status
Members:

key:
long NoteNumber::Note.NoteNumber

data:
char NoteText[MAX_TEXT]::Note.NoteText
char IsElectronicMail[BOOLEAN_VALUE]::Note.IsElectronicMail
char Status[NOTE_STATUS]::Note.Status
dbDate CreationDate::Note.CreationDate
number VendorID::Note.VendorID
char BuyerID[BUYERID]::Note.BuyerID
char EMailAddress[PER04]::Note.EMailAddress

}

- 448- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.60 NoteStatus Object

Object NoteStatus {
Relationships:

Objects Note(Status);
Exports:

Status
Members:

key:
char Status[NOTE_STATUS]::NoteStatus.Status

data:
}

- 449- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.61 OpenPurchaseRequest Object

Object OpenPurchaseRequest {
Members:

key:
char RequisitionNumber[14]::OpenPurchaseRequest.RequisitionNumber
char SolicitationNumber[7]::OpenPurchaseRequest.SolicitationNumber
char LineItem[4]::OpenPurchaseRequest.LineItem

data:
char StockNumber[15]::OpenPurchaseRequest.StockNumber
char SuspenseTime[3]::OpenPurchaseRequest.SuspenseTime
char RequiredDeliveryDate[5]::OpenPurchaseRequest.RequiredDeliveryDate
char DateReceived[5]::OpenPurchaseRequest.DateReceived
char Priority[2]::OpenPurchaseRequest.Priority
char Quantity[5]::OpenPurchaseRequest.Quantity
char UnitOfIssue[2]::OpenPurchaseRequest.UnitOfIssue
char RequisitionReturnIndicator[1]::OpenPurchaseRequest.RequisitionReturnIndicator
char RequisitionReturnDate[5]::OpenPurchaseRequest.RequisitionReturnDate
char DateCleared[5]::OpenPurchaseRequest.DateCleared
char SignalCode[1]::OpenPurchaseRequest.SignalCode
char SupplementalAddress[6]::OpenPurchaseRequest.SupplementalAddress
char FundCode[2]::OpenPurchaseRequest.FundCode
char RoutingID[3]::OpenPurchaseRequest.RoutingID
char BuyerCode[3]::OpenPurchaseRequest.BuyerCode
char EstimatedPrice[15]::OpenPurchaseRequest.EstimatedPrice
char ProjectTitle[25]::OpenPurchaseRequest.ProjectTitle
char AdviceCode[2]::OpenPurchaseRequest.AdviceCode
char DemandCode[1]::OpenPurchaseRequest.DemandCode
char SpwtInd[1]::OpenPurchaseRequest.SpwtInd
char ControlDate[5]::OpenPurchaseRequest.ControlDate
char ProjectCode[3]::OpenPurchaseRequest.ProjectCode

}

- 450- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.62 Opr Object

Object Opr {
Members:

key:
char RequisitionNumber[14]::Opr.RequisitionNumber
char SolicitationNumber[7]::Opr.SolicitationNumber
char LineItem[4]::Opr.LineItem

data:
char StockNumber[15]::Opr.StockNumber
char SuspenseTime[3]::Opr.SuspenseTime
char RequiredDeliveryDate[5]::Opr.RequiredDeliveryDate
char DateReceived[5]::Opr.DateReceived
char Priority[2]::Opr.Priority
char Quantity[5]::Opr.Quantity
char UnitOfIssue[2]::Opr.UnitOfIssue
char RequisitionReturnIndicator[1]::Opr.RequisitionReturnIndicator
char RequisitionReturnDate[5]::Opr.RequisitionReturnDate
char DateCleared[5]::Opr.DateCleared
char SignalCode[1]::Opr.SignalCode
char SupplementalAddress[6]::Opr.SupplementalAddress
char FundCode[2]::Opr.FundCode
char RoutingID[3]::Opr.RoutingID
char BuyerCode[3]::Opr.BuyerCode
char EstimatedPrice[15]::Opr.EstimatedPrice
char ProjectTitle[25]::Opr.ProjectTitle
char AdviceCode[2]::Opr.AdviceCode
char DemandCode[1]::Opr.DemandCode
char SpwtInd[1]::Opr.SpwtInd
char ControlDate[5]::Opr.ControlDate
char ProjectCode[3]::Opr.ProjectCode

}

- 451- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.63 OrganizationalEntity Object

Object OrganizationalEntity {
Relationships:

Objects Award(EntityIDCode, BusEntityType);
Exports:

EntityIDCode
Members:

key:
char EntityIDCode[N101]::OrganizationalEntity.EntityIDCode

data:
char EntityDesc[N102]::OrganizationalEntity.EntityDescription

}

- 452- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.64 OriginalTransaction Object

Object OriginalTransaction {
Members:

key:
number DocumentID::OriginalTransaction.DocumentID
long OriginalTransactionID::OriginalTransaction.OriginalTransactionID

data:
char ApplicationAckCode[2]::OriginalTransaction.ApplicationAckCode
char ReferenceCode[2]::OriginalTransaction.ReferenceCode
char ReferenceNumber[30]::OriginalTransaction.ReferenceNumber
char ApplicationReceiverCode[15]::OriginalTransaction.ApplicationReceiverCode
char ApplicationSenderCode[15]::OriginalTransaction.ApplicationSenderCode
dbDate GroupDate::OriginalTransaction.GroupDate
dbDate GroupTime::OriginalTransaction.GroupTime
char GroupControlNumber[9]::OriginalTransaction.GroupControlNumber
char

TransactionSetControlNumber[9]::OriginalTransaction.TransactionSetControlNumber
char TransactionSetIdentifierCode[3]::OriginalTransaction.TransactionSetIdentifierCode

}

- 453- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.65 PTCType Object

Object PTCType {
Relationships:

Objects PolicyTermsAndConditions(PTCQual, PTCType);
Exports:

PTCQual
Members:

key:
char PTCQual[REF01]::PTCType.PTCQual

data:
}

- 454- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.66 Packaging Object

Object Packaging {
Relationships:

IsA RelatedPaperwork(PaperworkID);
Object PkgCharacteristicCode(PkgCharacteristicCode, PackagingCharCode);
Object PkgDescriptionCode(PkgDescriptionCode, PackagingDescCode);

Exports:
PkgDescriptionCode
PkgCharacteristicCode
PaperworkID

Members:
key:

number PaperworkID::Packaging.PaperworkID
data:

char PkgCharacteristicCode[PKG02]::Packaging.PkgCharacteristicCode
char PkgDescriptionCode[PKG04]::Packaging.PkgDescriptionCode
char PkgDescription[PKG05]::Packaging.PkgDescription

}

- 455- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.67 PaperworkType Object

Object PaperworkType {
Relationships:

Objects RelatedPaperwork(PaperworkType, PaperworkType);
Exports:

Type
Members:

key:
char PaperworkType[PAPERWORKTYPE]::PaperworkType.PaperworkType

data:
}

- 456- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.68 Part Object

Object Part {
Relationships:

Object LineItem(DocumentID);
Object LineItem(ItemNumber);
Object PartIdentifier(PartIdentifier, PartType);

Exports:
PartIdentifier
ItemNumber
DocumentID

Members:
key:

number DocumentID::Part.DocumentID
char ItemNumber[PO101]::Part.ItemNumber
char PartIdentifier[PO110]::Part.PartIdentifier

data:
char PartNumber[PO111]::Part.PartNumber
char Manufacturer[MANUFACTURER]::Part.Manufacturer
char ItemDescription[MAX_TEXT]::Part.ItemDescription
char ServiceDescription[MAX_TEXT]::Part.ServiceDescription

}

- 457- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.69 PartIdentifier Object

Object PartIdentifier {
Relationships:

Objects Part(PartType, PartIdentifier);
Exports:

PartType
Members:

key:
char PartType[PO110]::PartIdentifier.PartType

data:
char PartDescription[MAX_TEXT]::PartIdentifier.PartDescription

}

- 458- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.70 Piins Object

Object Piins {
Relationships:
Exports:
Members:

key:
char PIIN[7]::Piins.PIIN

data:
char PiinStatus[6]::Piins.PiinStatus
char PiinType[6]::Piins.PiinType

}

- 459- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.71 PkgCharacteristicCode Object

Object PkgCharacteristicCode {
Relationships:

Objects Packaging(PackagingCharCode, PkgCharacteristicCode);
Exports:

PackagingCharCode
Members:

key:
char PackagingCharCode[PKG02]::PkgCharacteristicCode.PackagingCharCode

data:
}

- 460- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.72 PkgDescriptionCode Object

Object PkgDescriptionCode {
Relationships:

Objects Packaging(PackagingDescCode, PkgDescriptionCode);
Exports:

PackagingDescCode
Members:

key:
char PackagingDescCode[PKG04]::PkgDescriptionCode.PackagingDescCode

data:
}

- 461- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.73 PolicyTermsAndConditions Object

Object PolicyTermsAndConditions {
Relationships:

Object PTCType(PTCType, PTCQual);
IsA RelatedPaperwork(PaperworkID);

Exports:
PaperworkID
PTCType

Members:
key:

number PaperworkID::PolicyTermsAndConditions.PaperworkID
data:

char PTCType[REF01]::PolicyTermsAndConditions.PTCType
char PTCRefNumber[REF02]::PolicyTermsAndConditions.PTCRefNumber
char PTCDescription[REF03]::PolicyTermsAndConditions.PTCDescription

}

- 462- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.74 PreferredAccess Object

Object PreferredAccess {
Relationships:

Objects Contact(CommNumQual, PreferredAccess);
Exports:

CommNumQual
Members:

key:
char CommNumQual[PER03]::PreferredAccess.CommNumQual

data:
}

- 463- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.75 PriorityGroup Object

Object PriorityGroup {
Relationships:
Exports:
Members:

key:
char PriorityID[PRIORITY_GROUP]::PriorityGroup.PriorityID

data:
long ReqResponseDays::PriorityGroup.ReqResponseDays
long ReqDeliveryDays::PriorityGroup.ReqDeliveryDays

}

- 464- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.76 Project Object

Object Project {
Relationships:
Exports:

ProjectCode
Members:

key:
char ProjectCode[PROJECT_CODE]::Project.ProjectCode

data:
}

- 465- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.77 PurchaseOrderAck Object

Object PurchaseOrderAck {
Relationships:

IsA Document(DocumentID);
Exports:

DocumentID
Members:

key:
number DocumentID::PurchaseOrderAck.DocumentID

data:
}

- 466- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.78 PurchaseOrderChangeAckReq Object

Object PurchaseOrderChangeAckReq {
Relationships:

IsA Document(DocumentID);
Exports:

DocumentID
Members:

key:
number DocumentID::PurchaseOrderChangeAckReq.DocumentID

data:
}

- 467- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.79 Quote Object

Object Quote {
Relationships:

Object Vendor(VendorID);
Object Currency(CurrencyCode);
IsA Document(DocumentID);
Objects QuoteTerms(DocumentID);
Object Contact(FirstContactID, ContactID);
Object QuoteTypeCode(QuoteType);
Object Vendor(QuoterCageCode, CageCode);
Object Contact(SecondContactID, ContactID);
Object Vendor(SellerCageCode, CageCode);
Object Contact(ThirdContactID, ContactID);

Exports:
QuoterCageCode
SellerCageCode
QuoteType
ThirdContactID
FirstContactID
SecondContactID
CurrencyCode
DocumentID
VendorID

Members:
key:

number DocumentID::Quote.DocumentID
data:

number VendorID::Quote.VendorID
char RFQRefNumber[BQR02]::Quote.RFQRefNumber
char PriceQuoteRefNumber[REF03]::Quote.PriceQuoteRefNumber
dbDate RFQEffectiveDate::Quote.RFQEffectiveDate
dbDate QuoteEffectiveDate::Quote.QuoteEffectiveDate
dbDate QuoteExpireDate::Quote.QuoteExpireDate
char QuoteType[BQR06]::Quote.QuoteType
char NotesAttached[BOOLEAN_VALUE]::Quote.NotesAttached
char CurrencyCode[CUR02]::Quote.CurrencyCode
double ExchangeRate::Quote.ExchangeRate
dbDate RateEffective::Quote.RateEffective
dbDate RateExpires::Quote.RateExpires
char ContractRefNumber[REF02]::Quote.ContractRefNumber
char ContractDescription[REF03]::Quote.ContractDescription
dbDate ContractExpireDate::Quote.ContractExpireDate
char IsSmallBusiness[BOOLEAN_VALUE]::Quote.IsSmallBusiness
char FedSupplySchedNumber[REF02]::Quote.FedSupplySchedNumber
dbDate FedSupplySchedDate::Quote.FedSupplySchedDate
char SellerName[N102]::Quote.SellerName
char SellerCageCode[N104]::Quote.SellerCageCode
char SellerAddress[N301]::Quote.SellerAddress
char SellerCity[N401]::Quote.SellerCity

- 468- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

char SellerState[N402]::Quote.SellerState
char SellerZIPCode[N403]::Quote.SellerZIPCode
char QuoterName[N102]::Quote.QuoterName
char QuoterCageCode[N104]::Quote.QuoterCageCode
char QuoterAddress[N301]::Quote.QuoterAddress
char QuoterCity[N401]::Quote.QuoterCity
char QuoterState[N402]::Quote.QuoterState
char QuoterZIPCode[N403]::Quote.QuoterZIPCode
char QuoterCountry[N404]::Quote.QuoterCountry
char Electronic[BOOLEAN_VALUE]::Quote.Electronic
char FromFPI[BOOLEAN_VALUE]::Quote.FromFPI
char FromReqtsContract[BOOLEAN_VALUE]::Quote.FromReqtsContract
char FirstContactID[CONTACTID]::Quote.FirstContactID
char SecondContactID[CONTACTID]::Quote.SecondContactID
char ThirdContactID[CONTACTID]::Quote.ThirdContactID
char QuoteDescription[MAX_TEXT]::Quote.QuoteDescription

}

- 469- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.80 QuoteLineItem Object

Object QuoteLineItem {
Relationships:

Object Document(DocumentID);
Object FederalStockClass(FedStockClass, FedStockClassID);
IsA LineItem(ItemNumber);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);
Object UnitPriceCodeBasis(UnitPriceBasis);

Exports:
FedStockClass
ItemNumber
UnitPriceBasis
UnitOfMeasure

Members:
key:

number DocumentID::QuoteLineItem.DocumentID
char ItemNumber[PO101]::QuoteLineItem.ItemNumber

data:
char

IsFederalSupplySched[BOOLEAN_VALUE]::QuoteLineItem.IsFederalSupplySched
char ContractRefNumber[REF02]::QuoteLineItem.ContractRefNumber
char ContractDescription[REF03]::QuoteLineItem.ContractDescription
dbDate ContractExpireDate::QuoteLineItem.ContractExpireDate
char ReferenceNumber[REF02]::QuoteLineItem.ReferenceNumber
char ReferenceDescription[REF03]::QuoteLineItem.ReferenceDescription
char ItemDescription01[80]::QuoteLineItem.ItemDescription01
char ItemDescription02[80]::QuoteLineItem.ItemDescription02
char ItemDescription03[80]::QuoteLineItem.ItemDescription03
char ItemDescription04[80]::QuoteLineItem.ItemDescription04
char ItemDescription05[80]::QuoteLineItem.ItemDescription05
char ItemDescription06[80]::QuoteLineItem.ItemDescription06
char ItemDescription07[80]::QuoteLineItem.ItemDescription07
char ItemDescription08[80]::QuoteLineItem.ItemDescription08
char ItemDescription09[80]::QuoteLineItem.ItemDescription09
char ItemDescription10[80]::QuoteLineItem.ItemDescription10
char ItemDescription11[80]::QuoteLineItem.ItemDescription11
char ItemDescription12[80]::QuoteLineItem.ItemDescription12
char ItemDescription13[80]::QuoteLineItem.ItemDescription13
char ItemDescription14[80]::QuoteLineItem.ItemDescription14
char ItemDescription15[80]::QuoteLineItem.ItemDescription15
char ItemDescription16[80]::QuoteLineItem.ItemDescription16
char ItemDescription17[80]::QuoteLineItem.ItemDescription17
char ItemDescription18[80]::QuoteLineItem.ItemDescription18
char ItemDescription19[80]::QuoteLineItem.ItemDescription19
char ItemDescription20[80]::QuoteLineItem.ItemDescription20
char ItemDescription21[80]::QuoteLineItem.ItemDescription21
char ItemDescription22[80]::QuoteLineItem.ItemDescription22
char ItemDescription23[80]::QuoteLineItem.ItemDescription23
char ItemDescription24[80]::QuoteLineItem.ItemDescription24

- 470- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

char ItemDescription25[80]::QuoteLineItem.ItemDescription25
char ItemDescription26[80]::QuoteLineItem.ItemDescription26
char ItemDescription27[80]::QuoteLineItem.ItemDescription27
char ItemDescription28[80]::QuoteLineItem.ItemDescription28
char ItemDescription29[80]::QuoteLineItem.ItemDescription29
char ItemDescription30[80]::QuoteLineItem.ItemDescription30
char ItemDescription31[80]::QuoteLineItem.ItemDescription31
char ItemDescription32[80]::QuoteLineItem.ItemDescription32
char ItemDescription33[80]::QuoteLineItem.ItemDescription33
char ItemDescription34[80]::QuoteLineItem.ItemDescription34
char ItemDescription35[80]::QuoteLineItem.ItemDescription35
char ItemDescription36[80]::QuoteLineItem.ItemDescription36
char ItemDescription37[80]::QuoteLineItem.ItemDescription37
char ItemDescription38[80]::QuoteLineItem.ItemDescription38
char ItemDescription39[80]::QuoteLineItem.ItemDescription39
char ItemDescription40[80]::QuoteLineItem.ItemDescription40
char ItemDescription41[80]::QuoteLineItem.ItemDescription41
char ItemDescription42[80]::QuoteLineItem.ItemDescription42
char ItemDescription43[80]::QuoteLineItem.ItemDescription43
char ItemDescription44[80]::QuoteLineItem.ItemDescription44
char ItemDescription45[80]::QuoteLineItem.ItemDescription45
char ItemDescription46[80]::QuoteLineItem.ItemDescription46
char ItemDescription47[80]::QuoteLineItem.ItemDescription47
char ItemDescription48[80]::QuoteLineItem.ItemDescription48
dbDate DeliveryDate::QuoteLineItem.DeliveryDate
double Quantity::QuoteLineItem.Quantity
char UnitOfMeasure[PO103]::QuoteLineItem.UnitOfMeasure
double UnitPrice::QuoteLineItem.UnitPrice
char UnitPriceBasis[PO105]::QuoteLineItem.UnitPriceBasis
char FedStockClass[4]::QuoteLineItem.FedStockClass
char StdIndustrialClass[PO109]::QuoteLineItem.StdIndustrialClass
char PartListIncluded[BOOLEAN_VALUE]::QuoteLineItem.PartListIncluded
char VariationPercent[2]::QuoteLineItem.VariationPercent
char IsWinner[BOOLEAN_VALUE]::QuoteLineItem.IsWinner

}

- 471- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.81 QuoteTerms Object

Object QuoteTerms {
Relationships:

Object Quote(DocumentID);
Object TermsMethods(PaymentMethod);
Object TermsBasis(TermsBasis, BasisPeriod);

Exports:
DocumentID
TermsBasis
PaymentMethod

Members:
key:

number DocumentID::QuoteTerms.DocumentID
data:

char TermsBasis[ITD02]::QuoteTerms.TermsBasis
double DiscountPercent::QuoteTerms.DiscountPercent
dbDate DiscountDueDate::QuoteTerms.DiscountDueDate
long DiscountDueDays::QuoteTerms.DiscountDueDays
dbDate NetDueDate::QuoteTerms.NetDueDate
long NetDueDays::QuoteTerms.NetDueDays
long TotalDiscount::QuoteTerms.TotalDiscount
dbDate DeferredDate::QuoteTerms.DeferredDate
long DeferredAmount::QuoteTerms.DeferredAmount
double InvoicePayablePercent::QuoteTerms.InvoicePayablePercent
char Explanation[ITD12]::QuoteTerms.Explanation
long DayOfMonth::QuoteTerms.DayOfMonth
char PaymentMethod[ITD14]::QuoteTerms.PaymentMethod

}

- 472- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.82 QuoteTypeCode Object

Object QuoteTypeCode {
Relationships:

Objects Quote(QuoteType);
Exports:

QuoteType
Members:

key:
char QuoteType[BQR06]::QuoteTypeCode.QuoteType

data:
char TypeDescription[MAX_TEXT]::QuoteTypeCode.TypeDescription

}

- 473- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.83 RedirectReason Object

Object RedirectReason {
Relationships:
Exports:

Reason
Members:

key:
char Reason[REASON_CODE]::RedirectReason.Reason

data:
char Description[80]::RedirectReason.Description

}

- 474- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.84 RelatedPaperwork Object

Object RelatedPaperwork {
Relationships:

Object Document(DocumentID);
Object LineItem(LineItemNumber, ItemNumber);
Object PaperworkType(PaperworkType);

Exports:
LineItemNumber
PaperworkID
DocumentID
PaperworkType

Members:
key:

number PaperworkID::RelatedPaperwork.PaperworkID
data:

number DocumentID::RelatedPaperwork.DocumentID
char LineItemRelated[BOOLEAN_VALUE]::RelatedPaperwork.LineItemRelated
char LineItemNumber[4]::RelatedPaperwork.LineItemNumber
char PaperworkType[PAPERWORKTYPE]::RelatedPaperwork.PaperworkType
dbDate InclusionDate::RelatedPaperwork.InclusionDate

}

- 475- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.85 ReqForQuote Object

Object ReqForQuote {
Relationships:

IsA Document(DocumentID);
Exports:

DocumentID
Members:

key:
number DocumentID::ReqForQuote.DocumentID

data:
char DPASPriority[REF02]::ReqForQuote.DPASPriority
char InternalOrderNumber[REF02]::ReqForQuote.InternalOrderNumber
char SolicitationNumber[7]::ReqForQuote.SolicitationNumber
char PurchaseReqNumber[REF02]::ReqForQuote.PurchaseReqNumber
dbDate QuoteReceivedByDate::ReqForQuote.QuoteReceivedByDate
dbTime QuoteReceivedByTime::ReqForQuote.QuoteReceivedByTime
dbDate DeliveredByDate::ReqForQuote.DeliveredByDate
char

SmallBusinessOrPurchase[BOOLEAN_VALUE]::ReqForQuote.SmallBusinessOrPurchase
char SentToPublic[BOOLEAN_VALUE]::ReqForQuote.SentToPublic
char RequestForQuoteDesc[NTE02]::ReqForQuote.RequestForQuoteDesc
char Amended[BOOLEAN_VALUE]::ReqForQuote.Amended

}

- 476- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.86 ReqForQuoteLineItem Object

Object ReqForQuoteLineItem {
Relationships:

Object Document(DocumentID);
Object FederalStockClass(FedStockClass, FedStockClassID);
IsA LineItem(ItemNumber);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);
Object UnitPriceCodeBasis(UnitPriceBasis);

Exports:
FedStockClass
ItemNumber
UnitPriceBasis
UnitOfMeasure

Members:
key:

number DocumentID::ReqForQuoteLineItem.DocumentID
char ItemNumber[PO101]::ReqForQuoteLineItem.ItemNumber

data:
char PurchaseReqNumber[REF02]::ReqForQuoteLineItem.PurchaseReqNumber
char ItemDescription01[40]::ReqForQuoteLineItem.ItemDescription01
char ItemDescription02[40]::ReqForQuoteLineItem.ItemDescription02
char ItemDescription03[40]::ReqForQuoteLineItem.ItemDescription03
char ItemDescription04[40]::ReqForQuoteLineItem.ItemDescription04
char ItemDescription05[40]::ReqForQuoteLineItem.ItemDescription05
char ItemDescription06[40]::ReqForQuoteLineItem.ItemDescription06
char ItemDescription07[40]::ReqForQuoteLineItem.ItemDescription07
char ItemDescription08[40]::ReqForQuoteLineItem.ItemDescription08
char ItemDescription09[40]::ReqForQuoteLineItem.ItemDescription09
char ItemDescription10[40]::ReqForQuoteLineItem.ItemDescription10
char ItemDescription11[40]::ReqForQuoteLineItem.ItemDescription11
char ItemDescription12[40]::ReqForQuoteLineItem.ItemDescription12
char ItemDescription13[40]::ReqForQuoteLineItem.ItemDescription13
char ItemDescription14[40]::ReqForQuoteLineItem.ItemDescription14
char ItemDescription15[40]::ReqForQuoteLineItem.ItemDescription15
char ItemDescription16[40]::ReqForQuoteLineItem.ItemDescription16
char ItemDescription17[40]::ReqForQuoteLineItem.ItemDescription17
char ItemDescription18[40]::ReqForQuoteLineItem.ItemDescription18
char ItemDescription19[40]::ReqForQuoteLineItem.ItemDescription19
char ItemDescription20[40]::ReqForQuoteLineItem.ItemDescription20
char ItemDescription21[40]::ReqForQuoteLineItem.ItemDescription21
char ItemDescription22[40]::ReqForQuoteLineItem.ItemDescription22
char ItemDescription23[40]::ReqForQuoteLineItem.ItemDescription23
char ItemDescription24[40]::ReqForQuoteLineItem.ItemDescription24
char ItemDescription25[40]::ReqForQuoteLineItem.ItemDescription25
char ItemDescription26[40]::ReqForQuoteLineItem.ItemDescription26
char ItemDescription27[40]::ReqForQuoteLineItem.ItemDescription27
char ItemDescription28[40]::ReqForQuoteLineItem.ItemDescription28
char ItemDescription29[40]::ReqForQuoteLineItem.ItemDescription29
char ItemDescription30[40]::ReqForQuoteLineItem.ItemDescription30

- 477- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

char ItemDescription31[40]::ReqForQuoteLineItem.ItemDescription31
char ItemDescription32[40]::ReqForQuoteLineItem.ItemDescription32
char ItemDescription33[40]::ReqForQuoteLineItem.ItemDescription33
char ItemDescription34[40]::ReqForQuoteLineItem.ItemDescription34
char ItemDescription35[40]::ReqForQuoteLineItem.ItemDescription35
char ItemDescription36[40]::ReqForQuoteLineItem.ItemDescription36
char ItemDescription37[40]::ReqForQuoteLineItem.ItemDescription37
char ItemDescription38[40]::ReqForQuoteLineItem.ItemDescription38
char ItemDescription39[40]::ReqForQuoteLineItem.ItemDescription39
char ItemDescription40[40]::ReqForQuoteLineItem.ItemDescription40
char ItemDescription41[40]::ReqForQuoteLineItem.ItemDescription41
char ItemDescription42[40]::ReqForQuoteLineItem.ItemDescription42
char ItemDescription43[40]::ReqForQuoteLineItem.ItemDescription43
char ItemDescription44[40]::ReqForQuoteLineItem.ItemDescription44
char ItemDescription45[40]::ReqForQuoteLineItem.ItemDescription45
char ItemDescription46[40]::ReqForQuoteLineItem.ItemDescription46
char ItemDescription47[40]::ReqForQuoteLineItem.ItemDescription47
char ItemDescription48[40]::ReqForQuoteLineItem.ItemDescription48
double Quantity::ReqForQuoteLineItem.Quantity
char UnitOfMeasure[PO103]::ReqForQuoteLineItem.UnitOfMeasure
double UnitPrice::ReqForQuoteLineItem.UnitPrice
char UnitPriceBasis[PO105]::ReqForQuoteLineItem.UnitPriceBasis
char FedStockClass[4]::ReqForQuoteLineItem.FedStockClass
char StdIndustrialClass[PO109]::ReqForQuoteLineItem.StdIndustrialClass
char PartListIncluded[BOOLEAN_VALUE]::ReqForQuoteLineItem.PartListIncluded
char FSCSuffix[3]::ReqForQuoteLineItem.FSCSuffix
char ShipToZIP[9]::ReqForQuoteLineItem.ShipToZIP

}

- 478- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.87 RequiredResponseTime Object

Object RequiredResponseTime {
Relationships:
Exports:
Members:

key:
double LowerDollarAmount::RequiredResponseTime.LowerDollarAmount

data:
long ReqResponseDays::RequiredResponseTime.ReqResponseDays

}

- 479- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.88 ReviewStatus Object

Object ReviewStatus {
Relationships:

Objects Document(Status, ReviewStatus);
Exports:

Status
Members:

key:
char Status[REVIEW_STATUS]::ReviewStatus.Status

data:
}

- 480- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.89 SADBU Object

Object SADBU {
Relationships:
Exports:
Members:

key:
char LineItem[4]::SADBU.LineItem
number DocumentID::SADBU.DocumentID

data:
dbDate AwardDate::SADBU.AwardDate
char DissolutionReason[DISSO_REASON]::SADBU.DissolutionReason
double MoneySavedByDissolution::SADBU.MoneySavedByDissolution

}

- 481- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.90 SendTo Object

Object SendTo {
Relationships:

IsA RelatedPaperwork(PaperworkID);
Exports:

PaperworkID
Members:

key:
number PaperworkID::SendTo.PaperworkID

data:
char ShipToCode[N101]::SendTo.ShipToCode
char FirstName[N102]::SendTo.FirstName
char LastName[N201]::SendTo.LastName
char Address[N301]::SendTo.Address
char City[N401]::SendTo.City
char State[N402]::SendTo.State
char ZIP[N403]::SendTo.ZIP
char ShipToDescription[MAX_TEXT]::SendTo.ShipToDescription

}

- 482- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.91 Ship Object

Object Ship {
Relationships:
Members:

key:
char SRAN[SRAN_LEN]::Ship.SRAN

data:
char DisbNum[6]::Ship.DisbNum
char OrgName[30]::Ship.OrgName
char OrgAddress[25]::Ship.OrgAddress
char OrgCity[25]::Ship.OrgCity
char OrgZip[9]::Ship.OrgZip
char PayOff[30]::Ship.PayOff
char PayAddress[30]::Ship.PayAddress
char PayCity[25]::Ship.PayCity
char PayZip[9]::Ship.PayZip
char AdminOff[30]::Ship.AdminOff
char AdminAddress[30]::Ship.AdminAddress
char AdminCity[25]::Ship.AdminCity
char AdminZip[9]::Ship.AdminZip

}

- 483- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.92 ShippingDeliveryTypes Object

Object ShippingDeliveryTypes {
Relationships:

Objects ShippingDocPackage(DocDeliveryMethods, DocDeliveryMethod);
Exports:

DocDeliveryMethods
Members:

key:
char DocDeliveryMethods[PWK02]::ShippingDeliveryTypes.DocDeliveryMethods

data:
char DeliveryDescription[MAX_TEXT]::ShippingDeliveryTypes.DeliveryDescription

}

- 484- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.93 ShippingDocPackage Object

Object ShippingDocPackage {
Relationships:

Object ShippingDeliveryTypes(DocDeliveryMethod, DocDeliveryMethods);
Object ShippingDocTypes(DocumentType);
IsA RelatedPaperwork(PaperworkID);

Exports:
DocumentType
DocDeliveryMethod
PaperworkID

Members:
key:

number PaperworkID::ShippingDocPackage.PaperworkID
data:

char DocumentType[PWK01]::ShippingDocPackage.DocumentType
char DocDeliveryMethod[PWK02]::ShippingDocPackage.DocDeliveryMethod
long CopiesRequired::ShippingDocPackage.CopiesRequired
char WalshHealeyCompliant[2]::ShippingDocPackage.WalshHealeyCompliant
char AdditionalDesc[PWK07]::ShippingDocPackage.AdditionalDesc

}

- 485- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.94 ShippingDocTypes Object

Object ShippingDocTypes {
Relationships:

Objects ShippingDocPackage(DocumentType);
Exports:

DocumentType
Members:

key:
char DocumentType[PWK01]::ShippingDocTypes.DocumentType

data:
char DocumentDescription[MAX_TEXT]::ShippingDocTypes.DocumentDescription

}

- 486- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.95 Signal Object

Object Signal {
Relationships:
Exports:

SignalCode
Members:

key:
char SignalCode[SIGNAL_CODE]::Signal.SignalCode

data:
}
SimpleObject SiteConfiguration {
Relationships:
Exports:
Members:

key:
data:

char SiteAddress[PER04]::SiteConfiguration.SiteAddress
char SiteName[PER02]::SiteConfiguration.SiteName
char ReviewRequired[BOOLEAN_VALUE]::SiteConfiguration.ReviewRequired
long AwardPostedPeriod::SiteConfiguration.AwardPostedPeriod
long AwardAvailAfterShip::SiteConfiguration.AwardAvailAfterShip
char

DeliveryDateCalculation[CALC_CODE]::SiteConfiguration.DeliveryDateCalculation
}

- 487- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.96 SolicitationHistory Object

Object SolicitationHistory {
Relationships:

Object BCASPriority(BCASPriority, Priority);
Object CancellationCode(CancellationCode, CancelCode);
Object CompetitionCode(CompetitionCode, Competitive);
Object Currency(Currency, BCASCurrency);

Exports:
CompetitionCode
SolicitationNumber
Currency
BCASPriority
CancellationCode

Members:
key:

char StockNumber[15]::SolicitationHistory.StockNumber
data:

char SolicitationNumber[7]::SolicitationHistory.SolicitationNumber
char PIIN[PIIN_LEN]::SolicitationHistory.PIIN
char SupplementalPIIN[PIIN_SUPP]::SolicitationHistory.SupplementalPIIN
char VendorCode[VENDOR_CODE]::SolicitationHistory.VendorCode
char CompetitionCode[COMP_CODE]::SolicitationHistory.CompetitionCode
dbDate AwardDate::SolicitationHistory.AwardDate
char BCASPriority[BCAS_PRIORITY]::SolicitationHistory.BCASPriority
double Quantity::SolicitationHistory.Quantity
char UnitOfIssue[UNIT_OF_ISSUE]::SolicitationHistory.UnitOfIssue
double UnitPrice::SolicitationHistory.UnitPrice
char Currency[CUR_CODE]::SolicitationHistory.Currency
dbDate EstimatedDeliveryDate::SolicitationHistory.EstimatedDeliveryDate
char CancellationCode[CNX_CODE]::SolicitationHistory.CancellationCode

}

- 488- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.97 SolicitationLineItem Object

Object SolicitationLineItem {
Members:

key:
char SolicitationNumber[7]::SolicitationLineItem.SolicitationNumber
char LineItem[4]::SolicitationLineItem.LineItem

data:
char FundCode[2]::SolicitationLineItem.FundCode
char ProjectTitle[25]::SolicitationLineItem.ProjectTitle
char ProjectCode[3]::SolicitationLineItem.ProjectCode
char SignalCode[1]::SolicitationLineItem.SignalCode
char SupplementalAddress[6]::SolicitationLineItem.SupplementalAddress
char BrandNameOrSoleSource[2]::SolicitationLineItem.BrandNameOrSoleSource
char Priority[2]::SolicitationLineItem.Priority
char ShipToSRAN[6]::SolicitationLineItem.ShipToSRAN
char BillToSRAN[6]::SolicitationLineItem.BillToSRAN

}

- 489- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.98 SolicitationLineItemError Object

Object SolicitationLineItemError {
Relationships:

Objects Text(TextID, TextID);
Exports:

TextID
Members:

key:
char SolicitationNumber[7]::SolicitationLineItemError.SolicitationNumber
char LineItem[4]::SolicitationLineItemError.LineItem

data:
long TextID::SolicitationLineItemError.TextID
char Subject[80]::SolicitationLineItemError.Subject
dbDate ErrorDate::SolicitationLineItemError.ErrorDate
char MessageRead[1]::SolicitationLineItemError.MessageRead

}

- 490- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.99 Stmnt Object

Object Stmnt {
Members:

key:
char StatementIndicator[2]::Stmnt.StatementIndicator

data:
char StatementIndicator3[1]::Stmnt.StatementIndicator3
char s1[65]::Stmnt.s1
char s2[65]::Stmnt.s2
char s3[65]::Stmnt.s3
char s4[65]::Stmnt.s4
char s5[65]::Stmnt.s5
char s6[65]::Stmnt.s6
char s7[65]::Stmnt.s7
char s8[65]::Stmnt.s8
char s9[65]::Stmnt.s9
char s10[65]::Stmnt.s10
char s11[65]::Stmnt.s11
char s12[65]::Stmnt.s12
char s13[65]::Stmnt.s13
char s14[65]::Stmnt.s14
char s15[65]::Stmnt.s15
char s16[65]::Stmnt.s16
char s17[65]::Stmnt.s17
char s18[65]::Stmnt.s18
char s19[65]::Stmnt.s19
char s20[65]::Stmnt.s20
char s21[65]::Stmnt.s21
char s22[65]::Stmnt.s22
char s23[65]::Stmnt.s23
char s24[65]::Stmnt.s24
char s25[65]::Stmnt.s25
char s26[65]::Stmnt.s26
char s27[65]::Stmnt.s27
char s28[65]::Stmnt.s28
char s29[65]::Stmnt.s29
char s30[65]::Stmnt.s30

}

- 491- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.100 TechnicalErrorDescription Object

Object TechnicalErrorDescription {
Members:

key:
long OriginalTransactionID::TechnicalErrorDescription.OriginalTransactionID

data:
char

ApplicationErrorConditionCode[3]::TechnicalErrorDescription.ApplicationErrorConditionCode
char ApplicationErrorMessage[60]::TechnicalErrorDescription.ApplicationErrorMessage

}

- 492- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.101 TermsBasis Object

Object TermsBasis {
Relationships:

Objects QuoteTerms(BasisPeriod, TermsBasis);
Exports:

BasisPeriod
Members:

key:
char TypeCode[ITD01]::TermsBasis.TypeCode

data:
char BasisPeriod[ITD02]::TermsBasis.BasisPeriod
char PeriodDescription[MAX_TEXT]::TermsBasis.PeriodDescription

}

- 493- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.102 TermsMethods Object

Object TermsMethods {
Relationships:

Objects QuoteTerms(PaymentMethod);
Exports:

PaymentMethod
Members:

key:
char PaymentMethod[ITD14]::TermsMethods.PaymentMethod

data:
char MethodDescription[MAX_TEXT]::TermsMethods.MethodDescription

}

- 494- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.103 Text Object

Object Text {
Relationships:

Object SolicitationLineItemError(TextID, TextID);
Exports:

TextID
Members:

key:
long TextID::Text.TextID
long LineIndex::Text.LineIndex

data:
char Body[255]::Text.Body

}

- 495- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.104 TransactionReference Object

Object TransactionReference {
Members:

key:
char ReferenceCode[2]::TransactionReference.ReferenceCode

data:
char ReferenceText[30]::TransactionReference.ReferenceText

}

- 496- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.105 TransactionSent Object

Object TransactionSent {
Members:

key:
number DocumentID::TransactionSent.DocumentID

data:
char InterchangeSenderID[15]::TransactionSent.InterchangeSenderID
char InterchangeReceiverID[15]::TransactionSent.InterchangeReceiverID
char

InterchangeReceiverIDQualifier[2]::TransactionSent.InterchangeReceiverIDQualifier
char ApplicationSenderID[15]::TransactionSent.ApplicationSenderID
char ApplicationReceiverID[15]::TransactionSent.ApplicationReceiverID
char SenderEmailAddress[255]::TransactionSent.SenderEmailAddress
char ReceiverEmailAddress[255]::TransactionSent.ReceiverEmailAddress
char InterchangeControlNumber[9]::TransactionSent.InterchangeControlNumber
char GroupControlNumber[9]::TransactionSent.GroupControlNumber
long TransactionSetControlNumber::TransactionSent.TransactionSetControlNumber
dbDate AdviceDate::TransactionSent.AdviceDate
dbDate AdviceTime::TransactionSent.AdviceTime
char PurposeCode[2]::TransactionSent.PurposeCode

}

- 497- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.106 TypeOfMeasurement Object

Object TypeOfMeasurement {
Relationships:

Objects MeasurementData(MeasurementType, TypeOfMeasurement);
Exports:

MeasurementType
Members:

key:
char MeasurementType[MEA02]::TypeOfMeasurement.MeasurementType

data:
}

- 498- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.107 Unit Object

Object Unit {
Members:

key:
char UnitOfIssue[2]::Unit.UnitOfIssue
char UnitOfMeasure[2]::Unit.UnitOfMeasure

data:
char UnitDescription[80]::Unit.UnitDescription

}

- 499- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.108 UnitOfMeasure Object

Object UnitOfMeasure {
Relationships:

Objects AwardLineItem(UnitOfMeasureCode, UnitOfMeasure);
Objects DeliverySchedule(UnitOfMeasureCode, UnitOfMeasure);
Objects ItemDetails(UnitOfMeasureCode, LinearUnitOfMeasure);
Objects ItemDetails(UnitOfMeasureCode, SizeUnitOfMeasure);
Objects ItemDetails(UnitOfMeasureCode, VolumeUnitOfMeasure);
Objects ItemDetails(UnitOfMeasureCode, WeightUnitOfMeasure);
Objects MeasurementData(UnitOfMeasureCode, UnitOfMeasure);
Objects QuoteLineItem(UnitOfMeasureCode, UnitOfMeasure);
Objects ReqForQuoteLineItem(UnitOfMeasureCode, UnitOfMeasure);
Objects Variations(UnitOfMeasureCode, UnitOfMeasure);

Exports:
UnitOfMeasureCode

Members:
key:

char UnitOfMeasureCode[MEA04]::UnitOfMeasure.UnitOfMeasureCode
data:

char UnitDescription[MAX_TEXT]::UnitOfMeasure.UnitDescription
}

- 500- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.109 UnitPriceCodeBasis Object

Object UnitPriceCodeBasis {
Relationships:

Objects AwardLineItem(UnitPriceBasis);
Objects QuoteLineItem(UnitPriceBasis);
Objects ReqForQuoteLineItem(UnitPriceBasis);
Objects Variations(UnitPriceBasis, UnitPriceCodeBasis);

Exports:
UnitPriceType

Members:
key:

char UnitPriceBasis[PO105]::UnitPriceCodeBasis.UnitPriceBasis
data:

}

- 501- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.110 UserManagerDefaults Object

Object UserManagerDefaults {
Relationships:
Exports:
Members:

key:
char SiteAddress[26]::UserManagerDefaults.SiteAddress

data:
double EstimatedPriceLimit::UserManagerDefaults.EstimatedPriceLimit
double LargeBusinessPercentage::UserManagerDefaults.LargeBusinessPercentage
long OnlineDays::UserManagerDefaults.OnlineDays
char SendToPublic[BOOLEAN_VALUE]::UserManagerDefaults.SendToPublic
long PurchaseOrderAckDays::UserManagerDefaults.PurchaseOrderAckDays
long AutoAckHours::UserManagerDefaults.AutoAckHours
long MaximumPriority::UserManagerDefaults.MaximumPriority
char NotificationAddress[255]::UserManagerDefaults.NotificationAddress
char Acknowledge840[BOOLEAN_VALUE]::UserManagerDefaults.Acknowledge840
char Acknowledge850[BOOLEAN_VALUE]::UserManagerDefaults.Acknowledge850
char Acknowledge864[BOOLEAN_VALUE]::UserManagerDefaults.Acknowledge864
char UsersAllowed[BOOLEAN_VALUE]::UserManagerDefaults.UsersAllowed
char MessageOfTheDay[255]::UserManagerDefaults.MessageOfTheDay

}

- 502- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.111 adrs Object

Object Vadrs {
Relationships:
Exports:
Members:

key:
char Vendor[7]::Vadrs.Vendor

data:
char ConName[35]::Vadrs.ConName
char ConName2[35]::Vadrs.ConName2
char ConAdr1[35]::Vadrs.ConAdr1
char ConAdr2[30]::Vadrs.ConAdr2
char Zip[9]::Vadrs.Zip
char ExpDesg[1]::Vadrs.ExpDesg
char Contact[16]::Vadrs.Contact
char MinOrder[4]::Vadrs.MinOrder
char Phone[10]::Vadrs.Phone
char PhoneEx[4]::Vadrs.PhoneEx
char DunsNbr[9]::Vadrs.DunsNbr
char DunsNbr4[4]::Vadrs.DunsNbr4
char CustNbr[15]::Vadrs.CustNbr
char TaxId[9]::Vadrs.TaxId
char SolDate[5]::Vadrs.SolDate
char AwdDate[5]::Vadrs.AwdDate
char FaxNbr[10]::Vadrs.FaxNbr

}

- 503- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.112 VariationType Object

Object VariationType {
Relationships:

Objects Variations(ChangeReason, VariationType);
Exports:

ChangeReason
Members:

key:
char ChangeReason[PO301]::VariationType.ChangeReason

data:
}

- 504- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.113 Variations Object

Object Variations {
Relationships:

IsA RelatedPaperwork(PaperworkID);
Object UnitOfMeasure(UnitOfMeasure, UnitOfMeasureCode);
Object UnitPriceCodeBasis(UnitPriceCodeBasis, UnitPriceBasis);
Object VariationType(VariationType, ChangeReason);

Exports:
VariationType
UnitPriceBasis
PaperworkID
UnitOfMeasure

Members:
key:

number PaperworkID::Variations.PaperworkID
data:

char VariationType[PO301]::Variations.VariationType
dbDate VariationDate::Variations.VariationDate
double AlternatePrice::Variations.AlternatePrice
char UnitPriceCodeBasis[PO305]::Variations.UnitPriceCodeBasis
double Quantity::Variations.Quantity
char UnitOfMeasure[PO307]::Variations.UnitOfMeasure
char VariationDescription[PO308]::Variations.VariationDescription

}

- 505- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.114 Vendor Object

Object Vendor {
Relationships:
Exports:

VendorID
Members:

key:
number VendorID::Vendor.VendorID

data:
char CageCode[17]::Vendor.CageCode
char GovtPassword[30]::Vendor.GovtPassword
char Temporary[BOOLEAN_VALUE]::Vendor.Temporary
number PreviousVendorID::Vendor.PreviousVendorID
char InterchangeReceiverQualifier[2]::Vendor.InterchangeReceiverQualifier
char InterchangeReceiverID[15]::Vendor.InterchangeReceiverID
char ApplicationReceiverID[15]::Vendor.ApplicationReceiverID
char ElectronicMailAddress[255]::Vendor.ElectronicMailAddress
char LocalSystemID[7]::Vendor.LocalSystemID
date DateAssigned::Vendor.DateAssigned
char ParentName[VENDOR_NAME]::Vendor.ParentName
char IsAParent[BOOLEAN_VALUE]::Vendor.IsAParentCompany
char IsAShelteredWorkshop[BOOLEAN_VALUE]::Vendor.IsAShelteredWorkshop
char IsDebarred_Suspended[BOOLEAN_VALUE]::Vendor.IsDebarred_Suspended
char PriStdIndustrialClass[PO109]::Vendor.PriStdIndustrialClass
char OthStdIndustrialClass[PO109]::Vendor.OthStdIndustrialClass
long NumberOfEmployees::Vendor.NumberOfEmployees
char QuotesMadeAsSmallBus[BOOLEAN_VALUE]::Vendor.QuotesMadeAsSmallBus
char SiteDesignation[17]::Vendor.SiteDesignation

}

- 506- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.115 VendorAward Object

Object VendorAward {
Relationships:
Exports:
Members:

key:
number VendorID::VendorAward.VendorID

data:
char SiteID[SITENUMBER]::VendorAward.SiteID
number DocumentID::VendorAward.DocumentID
long ShippingDeliveryDelta::VendorAward.ShippingDeliveryDelta

}

- 507- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.116 VendorContact Object

Object VendorContact {
Relationships:

Object Vendor(VendorID);
Object Contact(ContactID);

Exports:
ContactID
VendorID

Members:
key:

char ContactID[CONTACTID]::VendorContact.ContactID
data:

number VendorID::VendorContact.VendorID
long Priority::VendorContact.Priority

}

- 508- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.117 VendorHistory Object

Object VendorHistory {
Relationships:
Exports:
Members:

key:
number CurrentVendorID::VendorHistory.CurrentVendorID

data:
number OldVendorID::VendorHistory.OldVendorID
char OldName[VENDOR_NAME]::VendorHistory.OldName
char OldCode[VENDOR_CODE]::VendorHistory.OldCode

}

- 509- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.1.118 VendorQuoteLineItem Object

Object VendorQuoteLineItem {
Relationships:
Exports:
Members:

key:
number VendorID::VendorQuoteLineItem.VendorID

data:
char FedStockClass[4]::VendorQuoteLineItem.FedStockClass

}

- 510- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.2 The GATEC Database Schema

An FBI file is post-processed by a oraperl script that scans the
definitions and parses the information into a database
representation. The script will verify database names that are
object names are being mapped to as well as type check the local
object type to the database column type. A warning message will
be generated for inconsistent types. The script is deficient in its
ability to manage updates to the definitions. At present, the only
update capability is to add new column mapping definitions.
Updates to prior definitions are ignored. Therefore, the present
method of managing updates to the database representation is to
clean out the existing definitions and reload the FBI files. Because
the FBI files are only intended as a portable source, the desirable
goal is to initially load the definitions and then to manage all
updates using database tools. A second oraperl utility is capable of
generating new FBI files from the database representation if
necessary. For complete details on the structure of the database
representation, please refer to the NORA Design Reference manual.

3.2.3 Detailed Schema Description

The GATEC 2 database schema is described on the following
pages.

- 511- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.1 ACCTG Table

 Name Null? Type
 ------------------------------- -------- ----
 FUNDCODE CHAR(2)
 SRAN CHAR(6)
 ACCTGCLASS CHAR(61)
 ALLOT CHAR(12)
 EXPEND CHAR(12)
 MANAGEMENTNOTICE CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 512- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.2 ACQUISITION Table

 Name Null? Type
 ------------------------------- -------- ----
 RFQNUMBER NOT NULL CHAR(7)
 SOLICITATIONNUMBER NOT NULL CHAR(7)
 SITEID NOT NULL CHAR(6)
 UTNNUMBER NOT NULL CHAR(16)
 DPASPRIORITY CHAR(30)
 INTERNALORDERNUMBER CHAR(30)
 PURCHASEREQNUMBER CHAR(30)
 ASSIGNEDBUYER NOT NULL CHAR(3)
 HOLDSTATUS CHAR(2)
 HOLDPERIOD DATE
 REVIEWSTATUS CHAR(2)
 PRIORITY CHAR(2)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 513- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.3 ACTIVESTATUS Table

 Name Null? Type
 ------------------------------- -------- ----
 STATUSIDENTIFIER NOT NULL NUMBER
 STATUSDESCRIPTION CHAR(80)

- 514- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.4 AWARD Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 PURCHASETYPE CHAR(2)
 PURCHASEORDERNUMBER NOT NULL CHAR(22)
 CALLDELIVERYORDERNUMBER CHAR(30)
 EFFECTIVEDATE DATE
 ACKNOWLEDGEMENT CHAR(2)
 AWARDDESCRIPTION CHAR(60)
 BUYERCURRENCYCODE CHAR(3)
 BUYEREXCHANGERATE NUMBER
 BUYERRATEEFFECTIVE DATE
 BUYERRATEEXPIRES DATE
 SELLERCURRENCYCODE CHAR(3)
 SELLEREXCHANGERATE NUMBER
 SELLERRATEEFFECTIVE DATE
 SELLERRATEEXPIRES DATE
 INTERNALORDERNUMBER CHAR(30)
 PURCHASEREQNUMBER NOT NULL CHAR(30)
 DPASPRIORITY CHAR(30)
 ACCTGNAPPROPDATA CHAR(30)
 ACCTGCLASSREFNUMBER CHAR(30)
 QUOTEREFERENCENUMBER CHAR(30)
 QUOTEREFERENCEDATE DATE
 RFQREFERENCENUMBER NOT NULL CHAR(45)
 RFQREFERENCEDATE DATE
 REQUIREDDELIVERYDATE DATE
 BUSENTITYTYPE CHAR(2)
 BUSENTITYNAME CHAR(35)
 BUSENTITYVENDORID NUMBER
 BUSENTITYDEPT CHAR(35)
 BUSENTITYADDRESS CHAR(35)
 BUSENTITYDEPT2 CHAR(35)
 BUSENTITYADDRESS2 CHAR(35)
 BUSENTITYCITY CHAR(19)
 BUSENTITYSTATE CHAR(2)
 BUSENTITYZIP CHAR(9)
 BIDNUMBER CHAR(30)
 BUYERSOFFICESYMBOL CHAR(30)
 CRITICALITYDESIGNATOR CHAR(30)
 FIRSTCONTACTID CHAR(8)
 SECONDCONTACTID CHAR(8)
 THIRDCONTACTID CHAR(8)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 515- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.5 AWARDLINEITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ITEMNUMBER NOT NULL CHAR(11)
 PRICETYPE CHAR(2)
 DPASPRIORITY CHAR(30)
 INTERNALORDERNUMBER CHAR(30)
 PURCHASEREQNUMBER CHAR(30)
 SINGLEDELIVERYDATE NUMBER
 DELIVERYDATE DATE
 TOTALLINEAMOUNT NUMBER
 QUANTITY NUMBER
 UNITOFMEASURE CHAR(2)
 UNITPRICE NUMBER
 UNITPRICEBASIS CHAR(2)
 FEDSTOCKCLASS NOT NULL CHAR(4)
 STDINDUSTRIALCLASS CHAR(30)
 PARTLISTINCLUDED NOT NULL CHAR(1)
 VARIATIONPERCENT CHAR(2)
 PURCHASEVARIATION CHAR(1)
 BUYERNAME CHAR(35)
 BUYERCAGECODE CHAR(17)
 BUYERDEPT CHAR(35)
 BUYERADDRESS CHAR(35)
 BUYERCITY CHAR(25)
 BUYERSTATE CHAR(2)
 BUYERZIP CHAR(9)
 SHIPTONAME CHAR(35)
 SHIPTOVENDORID NUMBER
 SHIPTODEPT CHAR(35)
 SHIPTOADDRESS CHAR(35)
 SHIPTOCITY CHAR(25)
 SHIPTOSTATE CHAR(2)
 SHIPTOZIP CHAR(9)
 BILLTONAME CHAR(35)
 BILLTOVENDORID NUMBER
 BILLTODEPT CHAR(35)
 BILLTOADDRESS CHAR(35)
 BILLTOCITY CHAR(25)
 BILLTOSTATE CHAR(2)
 BILLTOZIP CHAR(9)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 516- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.6 AWARDPURCHASETYPE Table

 Name Null? Type
 ------------------------------- -------- ----
 PURCHASETYPE NOT NULL CHAR(3)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 517- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.7 BCASAWARD Table

 Name Null? Type
 ------------------------------- -------- ----
 UTNNUMBER NOT NULL CHAR(16)
 VENDORCODE CHAR(7)
 NEGOTIATIONAUTHORITY CHAR(4)
 COMPETITIONCODE CHAR(17)
 SOLICITATIONNUMBER CHAR(7)
 PIIN CHAR(7)
 ORDERSTATEMENTS CHAR(30)
 CONFIRMWITH CHAR(15)
 CONTRACTREFNUMBER CHAR(30)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 518- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.8 BUYER Table

 Name Null? Type
 ------------------------------- -------- ----
 LOCALSYSTEMID NOT NULL NUMBER
 BUYERID NOT NULL CHAR(3)
 LASTNAME NOT NULL CHAR(35)
 FIRSTNAME NOT NULL CHAR(35)
 MIDDLEINITIAL CHAR(1)
 PHONENUMBER CHAR(25)
 EMAILADDRESS CHAR(25)
 LEADSTATUS CHAR(1)
 DOWNLOAD CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 519- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.9 CANCELLATIONCODE Table

 Name Null? Type
 ------------------------------- -------- ----
 CANCELCODE NOT NULL CHAR(2)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 520- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.10 CLAUSE Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 CLAUSECERTIFICATION CHAR(2)
 CLAUSEREFNUMBER CHAR(30)
 CLAUSESOURCE CHAR(45)
 CLAUSEEXPLANATION CHAR(45)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 521- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.11COMMUNICATOR Table

 Name Null? Type
 ------------------------------- -------- ----
 COMMUNICATORID NOT NULL NUMBER
 LASTNAME NOT NULL CHAR(36)
 FIRSTNAME CHAR(36)
 ADDITIONALNAME CHAR(36)
 ADDRESS CHAR(36)
 CITY CHAR(20)
 STATE CHAR(3)
 ZIP CHAR(10)
 FIRSTCONTACTID CHAR(9)
 SECONDCONTACTID CHAR(9)
 THIRDCONTACTID CHAR(9)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 522- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.12 CONTACT Table

 Name Null? Type
 ------------------------------- -------- ----
 CONTACTID NOT NULL CHAR(8)
 NAME CHAR(35)
 PREFERREDACCESS CHAR(2)
 PHONENUMBER CHAR(25)
 FAXNUMBER CHAR(25)
 EMAILADDRESS CHAR(25)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 523- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.13 CONTROLSTANDARDS Table

 Name Null? Type
 ------------------------------- -------- ----
 CONTROLSTANDARD NOT NULL CHAR(1)
 DEFINITION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 524- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.14 CONTROLVERSION Table

 Name Null? Type
 ------------------------------- -------- ----
 CONTROLVERSION NOT NULL CHAR(5)
 DEFINITION CHAR(255)
 DMNUMBER CHAR(8)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 525- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.15 DOCUMENT Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 UTNNUMBER CHAR(16)
 TRANSACTIONNUMBER CHAR(45)
 DOCUMENTTYPE CHAR(3)
 DOCUMENTVERSION CHAR(4)
 X12REFERENCENUMBER CHAR(45)
 EFFECTIVEDATE DATE
 EXPIRATIONDATE DATE
 DOCUMENTSTATUS CHAR(2)
 REVIEWSTATUS CHAR(2)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 526- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.16 DOCUMENTADDRESSEE Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 VENDORID NOT NULL NUMBER
 TRANSMITTALDATE DATE
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 527- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.17 DOCUMENTSENT Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 GROUPCONTROLNUMBER NOT NULL NUMBER
 TRANSACTIONSETCONTROLNUMBER CHAR(9)
 INTERCHANGECONTROLNUMBER CHAR(9)
 REJECTWARNINGSENT DATE
 OVERDUEWARNINGSENT DATE
 ISSUEDATE NOT NULL DATE
 CHECKACKNOWLEDGEMENT CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 528- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.18 DOCUMENTSTATUS Table

 Name Null? Type
 ------------------------------- -------- ----
 STATUS NOT NULL CHAR(17)
 ACTIVE CHAR(1)
 DESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 529- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.19 DOCUMENTTYPE Table

 Name Null? Type
 ------------------------------- -------- ----
 TRANSACTIONSETID NOT NULL CHAR(3)
 TYPEDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 530- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.20 DOCUMENTVERSION Table

 Name Null? Type
 ------------------------------- -------- ----
 VERSIONID NOT NULL CHAR(4)
 VERSIONTYPE NOT NULL CHAR(17)
 VERSIONDATE NOT NULL DATE
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 531- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.21DOCUMENTVERSIONTYPE Table

 Name Null? Type
 ------------------------------- -------- ----
 VERSIONTYPE NOT NULL CHAR(17)
 VERSIONDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 532- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.22 FREEONBOARD Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 FOBTYPE CHAR(2)
 FOBDESCRIPTION CHAR(80)
 FOBACCEPTANCEPOINT CHAR(2)
 FOBALTERNATEINSPECTION CHAR(1)
 FOBINSPECTIONPOINT CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 533- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.23 FSCSIC Table

 Name Null? Type
 ------------------------------- -------- ----
 FEDSTOCKCLASS NOT NULL CHAR(4)
 STDINDUSTRIALCLASS NOT NULL CHAR(4)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 534- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.24 FUNCTIONALGROUPHDR Table

 Name Null? Type
 ------------------------------- -------- ----
 CAGECODE NOT NULL CHAR(17)
 APPLICATIONSENDERSCODE CHAR(15)
 APPLICATIONRECEIVERSCODE CHAR(15)
 GROUPDATE DATE
 GROUPTIME DATE
 GROUPCONTROLNUMBER CHAR(9)
 RESPONSIBLEAGENCYCODE CHAR(2)
 VERSIONRELEASECODE CHAR(12)

- 535- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.25 GSDEFAULTS Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTTYPE NOT NULL CHAR(4)
 FUNCTIONALID NOT NULL CHAR(2)
 APPLICATIONSENDER NOT NULL CHAR(15)
 APPLICATIONRECEIVER NOT NULL CHAR(15)
 GROUPDATE NOT NULL DATE
 GROUPTIME NOT NULL DATE
 GROUPCONTROLNUMBER NOT NULL NUMBER
 RESPONSIBLEAGENCY NOT NULL CHAR(2)
 INTERCHANGEVERSION NOT NULL CHAR(12)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 536- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.26 HOLDSTATUS Table

 Name Null? Type
 ------------------------------- -------- ----
 STATUS NOT NULL CHAR(2)
 DESCRIPTION CHAR(80)
 DEFAULTDAYS NUMBER
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 537- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.27 HOLIDAYS Table

 Name Null? Type
 ------------------------------- -------- ----
 HOLIDAY NOT NULL DATE
 DESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 538- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.28 INTERCHANGECONTROLHDR Table

 Name Null? Type
 ------------------------------- -------- ----
 CAGECODE NOT NULL CHAR(17)
 SENDERID CHAR(15)
 CONTROLNUMBER NUMBER
 AUTHORIZATIONID CHAR(2)
 AUTHORIZATION CHAR(10)
 SECURITYID CHAR(2)
 SECURITY CHAR(10)
 INTERCHANGEID CHAR(2)
 RECEIVERID CHAR(15)
 INTERCHANGEDATE DATE
 INTERCHANGETIME DATE
 INTERCHANGECTLSTDS CHAR(1)
 INTERCHANGEVERSION CHAR(5)
 ACKREQUESTED CHAR(1)
 TESTINDICATOR CHAR(1)
 SUBELEMENTSEPARATOR CHAR(1)
 FUNCTIONALGROUPS NUMBER
 ACKCODE CHAR(1)
 NOTECODE CHAR(3)
 ELEMENTSEPARATOR CHAR(1)

- 539- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.29 ISADEFAULTS Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTTYPE NOT NULL CHAR(4)
 AUTHORIZATIONID NOT NULL CHAR(2)
 AUTHORIZATION NOT NULL CHAR(10)
 SECURITYID NOT NULL CHAR(2)
 SECURITY NOT NULL CHAR(10)
 SENDERIDQUALIFIER NOT NULL CHAR(2)
 SENDERID NOT NULL CHAR(15)
 RECEIVERIDQUALIFIER NOT NULL CHAR(2)
 RECEIVERID NOT NULL CHAR(15)
 INTERCHANGEDATE NOT NULL DATE
 INTERCHANGETIME NOT NULL DATE
 INTERCHANGECTLSTDS NOT NULL CHAR(1)
 INTERCHANGEVERSION NOT NULL CHAR(5)
 CONTROLNUMBER NOT NULL NUMBER
 ACKREQUESTED NOT NULL CHAR(1)
 TESTINDICATOR NOT NULL CHAR(1)
 SUBELEMENTSEPARATOR NOT NULL CHAR(1)
 ELEMENTSEPARATOR NOT NULL CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 540- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.30 ITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 STOCKNUMBER CHAR(15)
 SUPNOMENIND CHAR(1)
 CONTRIND CHAR(1)
 SUFFIX CHAR(2)
 UNITOFISSUE CHAR(2)
 BUYERCODE CHAR(3)
 CUSTOMERID CHAR(1)
 VARIATIONINQUANTITY CHAR(2)
 AUTOMATICPURCHASEORDER CHAR(2)
 BRANDNAMEORSOLESOURCE CHAR(2)
 RECDATE CHAR(5)
 COMMODITYASSIGNMENT CHAR(1)
 DATELASTAWARD CHAR(5)
 MANUFACTURERNAME CHAR(30)
 MANUFACTURERPART CHAR(20)
 NOMENCLATURE01 CHAR(40)
 NOMENCLATURE02 CHAR(40)
 NOMENCLATURE03 CHAR(40)
 NOMENCLATURE04 CHAR(40)
 NOMENCLATURE05 CHAR(40)
 NOMENCLATURE06 CHAR(40)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 541- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.31 LINEITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ITEMNUMBER NOT NULL CHAR(11)
 DOCUMENTTYPE NOT NULL CHAR(3)
 UNITOFMEASURE CHAR(2)
 FEDSTOCKCLASS CHAR(4)
 STDINDUSTRIALCLASS CHAR(30)
 SRANCODE CHAR(6)
 QUANTITY NUMBER
 STATUS CHAR(17)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 542- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.32 MEASUREMENTAPPLICATIONCODE Table

 Name Null? Type
 ------------------------------- -------- ----
 APPLICATION NOT NULL CHAR(3)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 543- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.33 MEASUREMENTDATA Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 APPLICATIONCODE CHAR(2)
 TYPEOFMEASUREMENT CHAR(3)
 MEASUREMENTVALUE NUMBER
 UNITOFMEASURE CHAR(2)
 MINIMUMVALUE NUMBER
 MAXIMUMVALUE NUMBER
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 544- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.34 MESSAGE Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 MESSAGEDATE DATE
 BUYERID CHAR(3)
 MESSAGENUMBER CHAR(30)
 SUBJECT CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 545- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.35 MESSAGEFROM Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 FROMINDEX NOT NULL NUMBER
 SENDERVENDORID NUMBER
 SENDERLASTNAME CHAR(35)
 SENDERFIRSTNAME CHAR(35)
 SENDERADDRESS CHAR(35)
 SENDERCITY CHAR(19)
 SENDERSTATE CHAR(2)
 SENDERZIP CHAR(9)
 FIRSTCONTACTID CHAR(8)
 SECONDCONTACTID CHAR(8)
 THIRDCONTACTID CHAR(8)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 546- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.36 MESSAGEREFERENCE Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 SOLICITATIONNUMBER CHAR(7)
 LINEITEM CHAR(4)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 547- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.37 MESSAGETEXTBODY Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 BODYINDEX NOT NULL NUMBER
 TEXTBODY CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 548- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.38 MESSAGETO Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 TOINDEX NOT NULL NUMBER
 VENDORID NUMBER
 RECEIVERLASTNAME CHAR(35)
 RECEIVERFIRSTNAME CHAR(35)
 RECEIVERADDRESS CHAR(35)
 RECEIVERCITY CHAR(19)
 RECEIVERSTATE CHAR(2)
 RECEIVERZIP CHAR(9)
 FIRSTCONTACTID CHAR(8)
 SECONDCONTACTID CHAR(8)
 THIRDCONTACTID CHAR(8)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 549- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.39 NOMENCLATURE Table

 Name Null? Type
 ------------------------------- -------- ----
 STOCKNUMBER NOT NULL CHAR(15)
 NOMENCLATURE07 CHAR(40)
 NOMENCLATURE08 CHAR(40)
 NOMENCLATURE09 CHAR(40)
 NOMENCLATURE10 CHAR(40)
 NOMENCLATURE11 CHAR(40)
 NOMENCLATURE12 CHAR(40)
 NOMENCLATURE13 CHAR(40)
 NOMENCLATURE14 CHAR(40)
 NOMENCLATURE15 CHAR(40)
 NOMENCLATURE16 CHAR(40)
 NOMENCLATURE17 CHAR(40)
 NOMENCLATURE18 CHAR(40)
 NOMENCLATURE19 CHAR(40)
 NOMENCLATURE20 CHAR(40)
 NOMENCLATURE21 CHAR(40)
 NOMENCLATURE22 CHAR(40)
 NOMENCLATURE23 CHAR(40)
 NOMENCLATURE24 CHAR(40)
 NOMENCLATURE25 CHAR(40)
 NOMENCLATURE26 CHAR(40)
 NOMENCLATURE27 CHAR(40)
 NOMENCLATURE28 CHAR(40)
 NOMENCLATURE29 CHAR(40)
 NOMENCLATURE30 CHAR(40)
 NOMENCLATURE31 CHAR(40)
 NOMENCLATURE32 CHAR(40)
 NOMENCLATURE33 CHAR(40)
 NOMENCLATURE34 CHAR(40)
 NOMENCLATURE35 CHAR(40)
 NOMENCLATURE36 CHAR(40)
 NOMENCLATURE37 CHAR(40)
 NOMENCLATURE38 CHAR(40)
 NOMENCLATURE39 CHAR(40)
 NOMENCLATURE40 CHAR(40)
 NOMENCLATURE41 CHAR(40)
 NOMENCLATURE42 CHAR(40)
 NOMENCLATURE43 CHAR(40)
 NOMENCLATURE44 CHAR(40)
 NOMENCLATURE45 CHAR(40)
 NOMENCLATURE46 CHAR(40)
 NOMENCLATURE47 CHAR(40)
 NOMENCLATURE48 CHAR(40)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 550- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.40 NOTE Table

 Name Null? Type
 ------------------------------- -------- ----
 NOTENUMBER NOT NULL NUMBER
 NOTETEXT CHAR(255)
 ISELECTRONICMAIL CHAR(1)
 STATUS CHAR(2)
 CREATIONDATE DATE
 VENDORID NUMBER
 BUYERID CHAR(3)
 EMAILADDRESS CHAR(25)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 551- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.41 OFFLINERFQS Table

 Name Null? Type
 ------------------------------- -------- ----
 RFQNUMBER NOT NULL CHAR(7)
 PIINNUMBER CHAR(7)
 ARCHIVEDATE NOT NULL DATE
 RETRIEVEDATE DATE
 RETRIEVEACTIVEDAYS NUMBER

- 552- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.42 OPR Table

 Name Null? Type
 ------------------------------- -------- ----
 REQUISITIONNUMBER CHAR(14)
 STOCKNUMBER CHAR(15)
 SUSPENSETIME CHAR(3)
 REQUIREDDELIVERYDATE CHAR(5)
 DATERECEIVED CHAR(5)
 PRIORITY CHAR(2)
 QUANTITY CHAR(5)
 UNITOFISSUE CHAR(2)
 REQUISITIONRETURNINDICATOR CHAR(1)
 REQUISITIONRETURNDATE CHAR(5)
 DATECLEARED CHAR(5)
 SIGNALCODE CHAR(1)
 SUPPLEMENTALADDRESS CHAR(6)
 FUNDCODE CHAR(2)
 ROUTINGID CHAR(3)
 BUYERCODE CHAR(3)
 SOLICITATIONNUMBER CHAR(7)
 LINEITEM CHAR(4)
 ESTIMATEDPRICE CHAR(15)
 PROJECTTITLE CHAR(25)
 ADVICECODE CHAR(2)
 DEMANDCODE CHAR(1)
 SPWTIND CHAR(1)
 CONTROLDATE CHAR(5)
 PROJECTCODE CHAR(3)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 553- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.43 ORIGINALTRANSACTION Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ORIGINALTRANSACTIONID NOT NULL NUMBER
 APPLICATIONACKCODE NOT NULL CHAR(2)
 REFERENCECODE CHAR(2)
 REFERENCENUMBER CHAR(30)
 APPLICATIONSENDERCODE CHAR(15)
 APPLICATIONRECEIVERCODE NOT NULL CHAR(15)
 GROUPDATE DATE
 GROUPTIME DATE
 GROUPCONTROLNUMBER CHAR(9)
 TRANSACTIONSETCONTROLNUMBER CHAR(9)
 TRANSACTIONSETIDENTIFIERCODE CHAR(3)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 554- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.44 PACKAGING Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 PKGCHARACTERISTICCODE CHAR(5)
 PKGDESCRIPTIONCODE CHAR(7)
 PKGDESCRIPTION CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 555- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.45 PART Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ITEMNUMBER NOT NULL CHAR(11)
 PARTIDENTIFIER CHAR(2)
 PARTNUMBER CHAR(30)
 MANUFACTURER CHAR(127)
 ITEMDESCRIPTION CHAR(255)
 SERVICEDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 556- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.46 PIINS Table

 Name Null? Type
 ------------------------------- -------- ----
 PIIN NOT NULL CHAR(7)
 PIINSTATUS NOT NULL CHAR(6)
 PIINTYPE NOT NULL CHAR(6)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 557- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.47 PREOPR Table

 Name Null? Type
 ------------------------------- -------- ----
 REQUISITIONNUMBER CHAR(14)
 STOCKNUMBER CHAR(15)
 SUSPENSETIME CHAR(3)
 REQUIREDDELIVERYDATE CHAR(5)
 DATERECEIVED CHAR(5)
 PRIORITY CHAR(2)
 QUANTITY CHAR(5)
 UNITOFISSUE CHAR(2)
 REQUISITIONRETURNINDICATOR CHAR(1)
 REQUISITIONRETURNDATE CHAR(5)
 DATECLEARED CHAR(5)
 SIGNALCODE CHAR(1)
 SUPPLEMENTALADDRESS CHAR(6)
 FUNDCODE CHAR(2)
 ROUTINGID CHAR(3)
 BUYERCODE CHAR(3)
 SOLICITATIONNUMBER CHAR(7)
 LINEITEM CHAR(4)
 ESTIMATEDPRICE CHAR(15)
 PROJECTTITLE CHAR(25)
 ADVICECODE CHAR(2)
 DEMANDCODE CHAR(1)
 SPWTIND CHAR(1)
 CONTROLDATE CHAR(5)
 PROJECTCODE CHAR(3)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 558- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.48 PRIORITYGROUP Table

 Name Null? Type
 ------------------------------- -------- ----
 PRIORITYID NOT NULL CHAR(30)
 REQRESPONSEDAYS NUMBER
 REQDELIVERYDAYS NUMBER
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 559- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.49 QUOTE Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 VENDORID NOT NULL NUMBER
 RFQREFNUMBER NOT NULL CHAR(45)
 RFQEFFECTIVEDATE DATE
 QUOTEEFFECTIVEDATE DATE
 QUOTEEXPIREDATE DATE
 QUOTETYPE CHAR(2)
 PRICEQUOTEREFNUMBER CHAR(30)
 NOTESATTACHED CHAR(1)
 CURRENCYCODE CHAR(3)
 EXCHANGERATE NUMBER
 RATEEFFECTIVE DATE
 RATEEXPIRES DATE
 CONTRACTREFNUMBER CHAR(30)
 CONTRACTDESCRIPTION CHAR(80)
 CONTRACTEXPIREDATE DATE
 ISSMALLBUSINESS NOT NULL CHAR(1)
 FEDSUPPLYSCHEDNUMBER CHAR(30)
 FEDSUPPLYSCHEDDATE DATE
 SELLERNAME CHAR(35)
 SELLERCAGECODE CHAR(17)
 SELLERADDRESS CHAR(35)
 SELLERADDRESS2 CHAR(35)
 SELLERCITY CHAR(19)
 SELLERSTATE CHAR(2)
 SELLERZIPCODE CHAR(9)
 SELLERCOUNTRY CHAR(2)
 QUOTERNAME CHAR(35)
 QUOTERCAGECODE CHAR(17)
 QUOTERADDRESS CHAR(35)
 QUOTERCITY CHAR(19)
 QUOTERSTATE CHAR(2)
 QUOTERZIPCODE CHAR(9)
 QUOTERCOUNTRY CHAR(2)
 ELECTRONIC CHAR(1)
 FROMFPI CHAR(1)
 FROMREQTSCONTRACT CHAR(1)
 FIRSTCONTACTID CHAR(8)
 SECONDCONTACTID CHAR(8)
 THIRDCONTACTID CHAR(8)
 QUOTEDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 560- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.50 QUOTELINEITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ITEMNUMBER NOT NULL CHAR(11)
 ISFEDERALSUPPLYSCHED CHAR(1)
 CONTRACTREFNUMBER CHAR(30)
 CONTRACTDESCRIPTION CHAR(80)
 CONTRACTEXPIREDATE DATE
 REFERENCENUMBER CHAR(30)
 REFERENCEDESCRIPTION CHAR(80)
 ITEMDESCRIPTION01 CHAR(80)
 ITEMDESCRIPTION02 CHAR(80)
 ITEMDESCRIPTION03 CHAR(80)
 ITEMDESCRIPTION04 CHAR(80)
 ITEMDESCRIPTION05 CHAR(80)
 ITEMDESCRIPTION06 CHAR(80)
 ITEMDESCRIPTION07 CHAR(80)
 ITEMDESCRIPTION08 CHAR(80)
 ITEMDESCRIPTION09 CHAR(80)
 ITEMDESCRIPTION10 CHAR(80)
 ITEMDESCRIPTION11 CHAR(80)
 ITEMDESCRIPTION12 CHAR(80)
 ITEMDESCRIPTION13 CHAR(80)
 ITEMDESCRIPTION14 CHAR(80)
 ITEMDESCRIPTION15 CHAR(80)
 ITEMDESCRIPTION16 CHAR(80)
 ITEMDESCRIPTION17 CHAR(80)
 ITEMDESCRIPTION18 CHAR(80)
 ITEMDESCRIPTION19 CHAR(80)
 ITEMDESCRIPTION20 CHAR(80)
 ITEMDESCRIPTION21 CHAR(80)
 ITEMDESCRIPTION22 CHAR(80)
 ITEMDESCRIPTION23 CHAR(80)
 ITEMDESCRIPTION24 CHAR(80)
 ITEMDESCRIPTION25 CHAR(80)
 ITEMDESCRIPTION26 CHAR(80)
 ITEMDESCRIPTION27 CHAR(80)
 ITEMDESCRIPTION28 CHAR(80)
 ITEMDESCRIPTION29 CHAR(80)
 ITEMDESCRIPTION30 CHAR(80)
 ITEMDESCRIPTION31 CHAR(80)
 ITEMDESCRIPTION32 CHAR(80)
 ITEMDESCRIPTION33 CHAR(80)
 ITEMDESCRIPTION34 CHAR(80)
 ITEMDESCRIPTION35 CHAR(80)
 ITEMDESCRIPTION36 CHAR(80)
 ITEMDESCRIPTION37 CHAR(80)
 ITEMDESCRIPTION38 CHAR(80)
 ITEMDESCRIPTION39 CHAR(80)
 ITEMDESCRIPTION40 CHAR(80)
 ITEMDESCRIPTION41 CHAR(80)
 ITEMDESCRIPTION42 CHAR(80)

- 561- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 ITEMDESCRIPTION43 CHAR(80)
 ITEMDESCRIPTION44 CHAR(80)
 ITEMDESCRIPTION45 CHAR(80)
 ITEMDESCRIPTION46 CHAR(80)
 ITEMDESCRIPTION47 CHAR(80)
 ITEMDESCRIPTION48 CHAR(80)
 DELIVERYDATE DATE
 QUANTITY NOT NULL NUMBER
 UNITOFMEASURE NOT NULL CHAR(2)
 UNITPRICE NUMBER
 UNITPRICEBASIS CHAR(2)
 FEDSTOCKCLASS CHAR(4)
 STDINDUSTRIALCLASS CHAR(30)
 PARTLISTINCLUDED CHAR(1)
 VARIATIONPERCENT CHAR(2)
 ISWINNER CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 562- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.51 QUOTETERMS Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 TERMSBASIS CHAR(2)
 DISCOUNTPERCENT NUMBER
 DISCOUNTDUEDATE DATE
 DISCOUNTDUEDAYS NUMBER
 NETDUEDATE DATE
 NETDUEDAYS NUMBER
 TOTALDISCOUNT NUMBER
 DEFERREDDATE DATE
 DEFERREDAMOUNT NUMBER
 INVOICEPAYABLEPERCENT NUMBER
 EXPLANATION CHAR(80)
 DAYOFMONTH NUMBER
 PAYMENTMETHOD CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 563- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.52 RELATEDPAPERWORK Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 PAPERWORKID NOT NULL NUMBER
 PAPERWORKTYPE NOT NULL CHAR(2)
 LINEITEMRELATED CHAR(1)
 LINEITEMNUMBER CHAR(4)
 INCLUSIONDATE DATE
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 564- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.53 REQFORQUOTE Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 DPASPRIORITY CHAR(30)
 INTERNALORDERNUMBER CHAR(30)
 SOLICITATIONNUMBER NOT NULL CHAR(7)
 PURCHASEREQNUMBER CHAR(30)
 QUOTERECEIVEDBYDATE DATE
 QUOTERECEIVEDBYTIME DATE
 DELIVEREDBYDATE DATE
 SMALLBUSINESSORPURCHASE CHAR(1)
 SENTTOPUBLIC CHAR(1)
 REQUESTFORQUOTEDESC CHAR(60)
 AMENDED NOT NULL CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 565- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.54 REQFORQUOTELINEITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 ITEMNUMBER NOT NULL CHAR(11)
 PURCHASEREQNUMBER NOT NULL CHAR(30)
 ITEMDESCRIPTION01 CHAR(40)
 ITEMDESCRIPTION02 CHAR(40)
 ITEMDESCRIPTION03 CHAR(40)
 ITEMDESCRIPTION04 CHAR(40)
 ITEMDESCRIPTION05 CHAR(40)
 ITEMDESCRIPTION06 CHAR(40)
 ITEMDESCRIPTION07 CHAR(40)
 ITEMDESCRIPTION08 CHAR(40)
 ITEMDESCRIPTION09 CHAR(40)
 ITEMDESCRIPTION10 CHAR(40)
 ITEMDESCRIPTION11 CHAR(40)
 ITEMDESCRIPTION12 CHAR(40)
 ITEMDESCRIPTION13 CHAR(40)
 ITEMDESCRIPTION14 CHAR(40)
 ITEMDESCRIPTION15 CHAR(40)
 ITEMDESCRIPTION16 CHAR(40)
 ITEMDESCRIPTION17 CHAR(40)
 ITEMDESCRIPTION18 CHAR(40)
 ITEMDESCRIPTION19 CHAR(40)
 ITEMDESCRIPTION20 CHAR(40)
 ITEMDESCRIPTION21 CHAR(40)
 ITEMDESCRIPTION22 CHAR(40)
 ITEMDESCRIPTION23 CHAR(40)
 ITEMDESCRIPTION24 CHAR(40)
 ITEMDESCRIPTION25 CHAR(40)
 ITEMDESCRIPTION26 CHAR(40)
 ITEMDESCRIPTION27 CHAR(40)
 ITEMDESCRIPTION28 CHAR(40)
 ITEMDESCRIPTION29 CHAR(40)
 ITEMDESCRIPTION30 CHAR(40)
 ITEMDESCRIPTION31 CHAR(40)
 ITEMDESCRIPTION32 CHAR(40)
 ITEMDESCRIPTION33 CHAR(40)
 ITEMDESCRIPTION34 CHAR(40)
 ITEMDESCRIPTION35 CHAR(40)
 ITEMDESCRIPTION36 CHAR(40)
 ITEMDESCRIPTION37 CHAR(40)
 ITEMDESCRIPTION38 CHAR(40)
 ITEMDESCRIPTION39 CHAR(40)
 ITEMDESCRIPTION40 CHAR(40)
 ITEMDESCRIPTION41 CHAR(40)
 ITEMDESCRIPTION42 CHAR(40)
 ITEMDESCRIPTION43 CHAR(40)
 ITEMDESCRIPTION44 CHAR(40)
 ITEMDESCRIPTION45 CHAR(40)
 ITEMDESCRIPTION46 CHAR(40)
 ITEMDESCRIPTION47 CHAR(40)

- 566- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 ITEMDESCRIPTION48 CHAR(40)
 QUANTITY NOT NULL NUMBER
 UNITOFMEASURE CHAR(2)
 UNITPRICE NUMBER
 UNITPRICEBASIS CHAR(2)
 FEDSTOCKCLASS NOT NULL CHAR(4)
 STDINDUSTRIALCLASS CHAR(30)
 PARTLISTINCLUDED CHAR(1)
 FSCSUFFIX CHAR(2)
 SHIPTOZIP CHAR(9)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 567- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.55 REVIEWSTATUS Table

 Name Null? Type
 ------------------------------- -------- ----
 STATUS NOT NULL CHAR(17)
 DESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 568- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.56 SADBU Table

 Name Null? Type
 ------------------------------- -------- ----
 LINEITEM NOT NULL CHAR(4)
 DOCUMENTID NOT NULL NUMBER
 AWARDDATE DATE
 DISSOLUTIONREASON CHAR(2)
 MONEYSAVEDBYDISSOLUTION NUMBER
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 569- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.57 SHIP Table

 Name Null? Type
 ------------------------------- -------- ----
 SRAN CHAR(6)
 DISBNUM CHAR(6)
 ORGNAME CHAR(30)
 ORGADDRESS CHAR(30)
 ORGCITY CHAR(25)
 ORGZIP CHAR(9)
 PAYOFF CHAR(30)
 PAYADDRESS CHAR(30)
 PAYCITY CHAR(25)
 PAYZIP CHAR(9)
 ADMINOFF CHAR(30)
 ADMINADDRESS CHAR(30)
 ADMINCITY CHAR(25)
 ADMINZIP CHAR(9)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 570- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.58 SHIPPINGDOCPACKAGE Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 DOCUMENTTYPE NOT NULL CHAR(2)
 DOCDELIVERYMETHOD CHAR(2)
 COPIESREQUIRED NUMBER
 WALSHHEALEYCOMPLIANT CHAR(2)
 ADDITIONALDESC CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 571- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.59 ITECONFIGURATION Table

 Name Null? Type
 ------------------------------- -------- ----
 SITEADDRESS NOT NULL CHAR(25)
 SITENAME NOT NULL CHAR(35)
 REVIEWREQUIRED NOT NULL CHAR(1)
 AWARDPOSTEDPERIOD NOT NULL NUMBER
 AWARDAVAILAFTERSHIP NOT NULL NUMBER
 DELIVERYDATECALCULATION NOT NULL CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 572- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.60 SOLICITATIONHISTORY Table

 Name Null? Type
 ------------------------------- -------- ----
 STOCKNUMBER NOT NULL CHAR(15)
 SOLICITATIONNUMBER NOT NULL CHAR(7)
 PIIN CHAR(7)
 SUPPLEMENTALPIIN CHAR(4)
 VENDORCODE CHAR(7)
 COMPETITIONCODE CHAR(1)
 AWARDDATE DATE
 BCASPRIORITY CHAR(2)
 QUANTITY NUMBER
 UNITOFISSUE CHAR(2)
 UNITPRICE NUMBER
 CURRENCY CHAR(17)
 ESTIMATEDDELIVERYDATE DATE
 CANCELLATIONCODE CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 573- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.61 SOLICITATIONLINEITEM Table

 Name Null? Type
 ------------------------------- -------- ----
 SOLICITATIONNUMBER CHAR(7)
 LINEITEM CHAR(4)
 FUNDCODE CHAR(2)
 PROJECTTITLE CHAR(25)
 PROJECTCODE CHAR(3)
 SIGNALCODE CHAR(1)
 SUPPLEMENTALADDRESS CHAR(6)
 BRANDNAMEORSOLESOURCE CHAR(2)
 PRIORITY CHAR(2)
 SHIPTOSRAN CHAR(6)
 BILLTOSRAN CHAR(6)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 574- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.62 SOLICITATIONLINEITEMERROR Table

 Name Null? Type
 ------------------------------- -------- ----
 SOLICITATIONNUMBER CHAR(7)
 LINEITEM CHAR(4)
 TEXTID NOT NULL NUMBER
 SUBJECT CHAR(80)
 ERRORDATE NOT NULL DATE
 MESSAGEREAD CHAR(1)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 575- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.63 STATUSOPERATION Table

 Name Null? Type
 ------------------------------- -------- ----
 STATUSIDENTIFIER NOT NULL NUMBER
 STATUSDESCRIPTION CHAR(80)

- 576- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.64 STMNT Table

 Name Null? Type
 ------------------------------- -------- ----
 STATEMENTINDICATOR CHAR(2)
 STATEMENTINDICATOR3 CHAR(1)
 S1 CHAR(65)
 S2 CHAR(65)
 S3 CHAR(65)
 S4 CHAR(65)
 S5 CHAR(65)
 S6 CHAR(65)
 S7 CHAR(65)
 S8 CHAR(65)
 S9 CHAR(65)
 S10 CHAR(65)
 S11 CHAR(65)
 S12 CHAR(65)
 S13 CHAR(65)
 S14 CHAR(65)
 S15 CHAR(65)
 S16 CHAR(65)
 S17 CHAR(65)
 S18 CHAR(65)
 S19 CHAR(65)
 S20 CHAR(65)
 S21 CHAR(65)
 S22 CHAR(65)
 S23 CHAR(65)
 S24 CHAR(65)
 S25 CHAR(65)
 S26 CHAR(65)
 S27 CHAR(65)
 S28 CHAR(65)
 S29 CHAR(65)
 S30 CHAR(65)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 577- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.65 TECHNICALERRORDESCRIPTION Table

 Name Null? Type
 ------------------------------- -------- ----
 ORIGINALTRANSACTIONID NOT NULL NUMBER
 APPLICATIONERRORCONDITIONCODE NOT NULL CHAR(3)
 APPLICATIONERRORMESSAGE NOT NULL CHAR(60)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 578- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.66 TERMSBASIS Table

 Name Null? Type
 ------------------------------- -------- ----
 TYPECODE NOT NULL CHAR(2)
 BASISPERIOD CHAR(2)
 PERIODDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 579- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.67 TEXT Table

 Name Null? Type
 ------------------------------- -------- ----
 TEXTID NOT NULL NUMBER
 LINEINDEX NOT NULL NUMBER
 BODY CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 580- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.68 TRANSACTIONSENT Table

 Name Null? Type
 ------------------------------- -------- ----
 DOCUMENTID NOT NULL NUMBER
 INTERCHANGESENDERID NOT NULL CHAR(15)
 INTERCHANGERECEIVERID NOT NULL CHAR(15)
 INTERCHANGERECEIVERIDQUALIFIER NOT NULL CHAR(2)
 APPLICATIONSENDERID NOT NULL CHAR(15)
 APPLICATIONRECEIVERID NOT NULL CHAR(15)
 SENDEREMAILADDRESS NOT NULL CHAR(255)
 RECEIVEREMAILADDRESS NOT NULL CHAR(255)
 INTERCHANGECONTROLNUMBER NOT NULL CHAR(9)
 GROUPCONTROLNUMBER NOT NULL CHAR(9)
 TRANSACTIONSETCONTROLNUMBER NOT NULL NUMBER
 ADVICEDATE NOT NULL DATE
 ADVICETIME NOT NULL DATE
 PURPOSECODE NOT NULL CHAR(2)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 581- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.69 UNIT Table

 Name Null? Type
 ------------------------------- -------- ----
 UNITOFISSUE NOT NULL CHAR(2)
 UNITOFMEASURE NOT NULL CHAR(2)
 UNITDESCRIPTION NOT NULL CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 582- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.70 UNITOFMEASURE Table

 Name Null? Type
 ------------------------------- -------- ----
 UNITOFMEASURECODE NOT NULL CHAR(2)
 UNITDESCRIPTION CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 583- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.71 USERMANAGERDEFAULTS Table

 Name Null? Type
 ------------------------------- -------- ----
 SITEADDRESS NOT NULL CHAR(26)
 ESTIMATEDPRICELIMIT NOT NULL NUMBER
 LARGEBUSINESSPERCENTAGE NUMBER
 ONLINEDAYS NUMBER
 SENDTOPUBLIC CHAR(1)
 PURCHASEORDERACKDAYS NUMBER
 AUTOACKHOURS NOT NULL NUMBER
 MAXIMUMPRIORITY NOT NULL NUMBER
 NOTIFICATIONADDRESS CHAR(255)
 ACKNOWLEDGE840 CHAR(1)
 ACKNOWLEDGE850 CHAR(1)
 ACKNOWLEDGE864 CHAR(1)
 USERSALLOWED NOT NULL CHAR(1)
 MESSAGEOFTHEDAY CHAR(255)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 584- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.72 VADRS Table

 Name Null? Type
 ------------------------------- -------- ----
 VENDOR CHAR(7)
 CONNAME CHAR(35)
 CONNAME2 CHAR(35)
 CONADR1 CHAR(35)
 CONADR2 CHAR(30)
 ZIP CHAR(9)
 EXPDESG CHAR(1)
 CONTACT CHAR(16)
 MINORDER CHAR(4)
 PHONE CHAR(10)
 PHONEEX CHAR(4)
 DUNSNBR CHAR(9)
 DUNSNBR4 CHAR(4)
 CUSTNBR CHAR(15)
 TAXID CHAR(9)
 SOLDATE CHAR(5)
 AWDDATE CHAR(5)
 FAXNBR CHAR(10)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 585- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.73 VARIATIONS Table

 Name Null? Type
 ------------------------------- -------- ----
 PAPERWORKID NOT NULL NUMBER
 VARIATIONTYPE NOT NULL CHAR(2)
 VARIATIONDATE DATE
 ALTERNATEPRICE NUMBER
 UNITPRICECODEBASIS CHAR(2)
 QUANTITY NUMBER
 UNITOFMEASURE CHAR(2)
 VARIATIONDESCRIPTION CHAR(80)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 586- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.3.74 VENDOR Table

 Name Null? Type
 ------------------------------- -------- ----
 VENDORID NOT NULL NUMBER
 CAGECODE NOT NULL CHAR(17)
 GOVTPASSWORD NOT NULL CHAR(30)
 TEMPORARY CHAR(1)
 PREVIOUSVENDORID NUMBER
 INTERCHANGERECEIVERQUALIFIER NOT NULL CHAR(2)
 INTERCHANGERECEIVERID NOT NULL CHAR(15)
 APPLICATIONRECEIVERID NOT NULL CHAR(15)
 ELECTRONICMAILADDRESS NOT NULL CHAR(255)
 LOCALSYSTEMID CHAR(7)
 DATEASSIGNED NOT NULL DATE
 PARENTNAME CHAR(175)
 ISAPARENTCOMPANY CHAR(1)
 ISASHELTEREDWORKSHOP CHAR(1)
 ISDEBARRED_SUSPENDED CHAR(1)
 PRISTDINDUSTRIALCLASS CHAR(30)
 OTHSTDINDUSTRIALCLASS CHAR(30)
 NUMBEROFEMPLOYEES NUMBER
 QUOTESMADEASSMALLBUS CHAR(1)
 SITEDESIGNATION CHAR(17)
 ACTIVESTATUS NOT NULL NUMBER
 STATUSDATE NOT NULL DATE
 STATUSOPERATION NOT NULL NUMBER
 STATUSORIGINATOR NOT NULL CHAR(8)

- 587- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.4 NARQ Code Generation Utility

Once the database representation has been formed from the FBI
files, a third oraperl script is responsible for parsing the definitions
into the C++ source files, C++ header files and single Imakefile
needed to generate the NARQ library. The code generator is
capable of generating source for all known objects, generating
source for a list of known objects and providing a listing of known
objects contained in the database representation. It can also
manage the output locations for the header files as well as the C++
source files. The Imakefile generated by the script will always
generate the rules for the entire library no matter how many objects
source is generated for. The primary limitation with the use of an
oraperl code generator is also one of its primary benefits. On the
plus side, new capabilities can be added by modifications at a
single source, the oraperl code generator script. On the minus side,
in order to make changes to the source, a fairly steep learning
curve is associated with understanding oraperl as well as the
structure of the code generation script. Additionally, any software
error introduced into the code generator has the potential of being
propagated to all NARQ object classes.

3.2.5 NARQDEF Detail Reference

3.2.5.1 DATATYPE Table

 Name Null? Type
 ------------------------------- -------- ----
 DATATYPEID NUMBER
 FBITYPE CHAR(32)
 DEFINELENGTH CHAR(1)
 DATATYPEDESCRIPTION CHAR(255)

- 588- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.2 DERIVEDOBJECT Table

 Name Null? Type
 ------------------------------- -------- ----
 DERIVEDOBJID NOT NULL NUMBER
 DERIVEDOBJELEMID NOT NULL NUMBER
 OBJECTIDENTIFIER NOT NULL NUMBER
 ELEMENTIDENTIFIER NOT NULL NUMBER
 PUBLICOBJECT CHAR(1)

- 589- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.3 OBJECT Table

 Name Null? Type
 ------------------------------- -------- ----
 OBJECTIDENTIFIER NOT NULL NUMBER
 OBJECTNAME NOT NULL CHAR(255)
 DBTABLENAME NOT NULL CHAR(255)
 DERIVEDOBJECT NOT NULL CHAR(1)

- 590- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.4 OBJECTCONSTANTS Table

 Name Null? Type
 ------------------------------- -------- ----
 CONSTANTIDENTIFIER CHAR(255)
 CONSTANTVALUE NUMBER

- 591- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.5 OBJECTELEMENT Table

 Name Null? Type
 ------------------------------- -------- ----
 ELEMENTIDENTIFIER NOT NULL NUMBER
 OBJECTIDENTIFIER NOT NULL NUMBER
 ELEMENTNAME NOT NULL CHAR(255)
 DBFIELDNAME NOT NULL CHAR(255)
 DATATYPE NOT NULL NUMBER
 LENGTHCONSTANT CHAR(24)
 X12SEGMENT CHAR(1)
 SEQUENCENUMBER CHAR(8)
 DATASIZE NUMBER
 DATAPRECISION NUMBER
 KEYVALUE CHAR(1)
 EXPORTED CHAR(1)
 READONLY CHAR(1)

- 592- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.6 OBJECTRELATIONSHIP Table

 Name Null? Type
 ------------------------------- -------- ----
 PARENTOBJECTID NOT NULL NUMBER
 PARENTOBJECTELEMID NUMBER
 CHILDOBJECTID NUMBER
 CHILDOBJECTELEMID NUMBER
 RELATIONID NOT NULL NUMBER

- 593- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.7 RELATION Table

 Name Null? Type
 ------------------------------- -------- ----
 RELATIONID NUMBER
 RELATIONDESCRIPTION CHAR(255)

- 594- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.2.5.8 SIMPLEOBJECT Table

 Name Null? Type
 ------------------------------- -------- ----
 OBJECTIDENTIFIER NOT NULL NUMBER
 OBJECTNAME NOT NULL CHAR(255)
 DBTABLENAME NOT NULL CHAR(255)

- 595- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.3 Development Environment

At present, the entire source code, database schema descriptions
and ASCII documentation is stored in a CVS repository. (For more
information regarding CVS, please refer to on-line
documentation). The current structure of the repository is given in
figures 4-1 and 4-2.

doc include installed man schema src

narqdb

libbin x12narqdef v6oraclenarq nora mann

figure 4-1. Structure of /narqdb directory

src

bin data fbi include lib plsql sql util

narq nora nora ctl dba-tools

figure 4-2. Structure of /narqdb/src directory

- 596- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.3.1 Building Libraries

The procedure used to compile and build the NARQ and NORA
libraries is fairly automated. A top-level Imakefile is used to
manage the entire generate dependency-compile-link-install
process. When moving the code to another machine, there is only
one configuration parameter that needs to be set in the Imakefile;
the name of the root level directory in which the source exists. For
example, if user smith has a home directory of /home/smith in
which the NARQ code has be installed into his ‘src’ subdirectory,
the NARQDB variable in the top-level Imakefile would need to be
configured as ‘/home/smith/src/narqdb’. During the development
process, it is also necessary to have an environment variable
defined the same way. Other tools, notably oraperl scripts, rely on
the existence of it.

Building and installing the libraries is a straightforward three-step
process. At the root level directory (/home/smith/src/narqdb in our
example), type: xmkmf -a.(Note: the xmkmf script and the imake
utility that it calls are included with MIT’s X11 distribution) This
command will read the top-level Imakefile which will instruct it to
create Makefiles and associated dependencies for those
subdirectories that it has been instructed to step into and that
contain Imakefiles. Once this command has stepped through each
sub-directory, each subdirectory will contain a Makefile. The
second step is to type: make. Again, this command will step
through each subdirectory following the rules originally defined in
each Imakefile. Upon completion, the NARQ, NORA and
NARQ_UTIL libraries will have been built. (The NARQ_UTIL
library is a small set of specialized purpose function calls). The
final step will install these new libraries into the top-level
installed/lib directory from which they can be moved or copied in
order to make them available to other users/developers.

To reiterate, the three steps are as follows:

1) Type: xmkmf -a
This will run through each director that has build instructions to
defined dependencies and to construct the necessary Makefiles.
2) Type: make
This will run through each directory in which a Makefile was
constructed in the previous step building the necessary system
components.
3) Type: make install
This will move the libraries created in the last step and place them
in the /installed/lib directory located in the top-level directory.

- 597- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.3.2 Making Changes to Libraries

Changes to the NORA library will either take the form of
additional functionality or correction of a programming fault. After
making the necessary code changes, the only other steps required
are step two and three above. If new object classes are to be added
to the NORA library, this will require a change to the Imakefile
and a subsequent regeneration of the associated Makefile. It is
beyond the scope of this document to explain the format and use of
Imakefiles.

Changes to the NARQ library most likely are the result of a change
to the GATEC database schema. Because all of the code in the
NARQ library is generated from FBI files and is dependent on a
consistent database schema, changes to the NARQ library are
unnecessarily complicated. The necessary sequence of steps is as
follows (for specifics, please refer to the NORA Design Reference
documentation) :

1) modify schema description file and update database schema
2) modify FBI textual description and update GATEC schema
representation
3) generate new C++ object code and associated header file
4) build and install NARQ library

The complications surrounding the first step are dependent on
whether the table being update currently contains data. If not, the
step is straightforward. If so, the existing information must be
moved out and reloaded into the new schema. Please refer to the
Oracle documentation for details.

The second step is potentially the most difficult because of the lack
of tools necessary to facilitate this change. The utility that is used
to parse FBI files and maintain the object view of the GATEC
schema currently only deals with the addition of columns. It does
not handle the removal of columns nor does it handle changes to
column type or name. Because of this limitation, it generally
recommended that the entire object view be cleaned and reloaded
for anything but the addition of new columns.

The generation of the C++ object code is managed by an oraperl
script. Because of this, changes to the code can be difficult to make
since it is often difficult to determine where the code changes need
to be made. During the development process, the normal testing
method was to update the code generator, generate a single object
(not all objects!) and run tests against just that object before
determining whether to apply the changes to the remaining objects.

- 598- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Because the third step creates a new Imakefile (though it may not
differ from the most recent prior version), it is necessary to
generate a new Makefile. However, once that is done, it is a simple
matter of typing, make, and make install.

3.4 Database Connection

This example is the NORA equivalent of the infamous “hello
world” program. The only NORA classes involved are the
Database and Connection classes. The program itself attempts to
open a connection to a database. It will report back on whether or
not it was successful.

//
// connect.cc - simple application that attempts to connect
// to local Oracle database as user ‘scott’.
//

#include <stdlib.h>
#include <iostream.h>

#include <nora/Connection.h>
#include <nora/Database.h>

main() {
 Connection* db_connection;
 db_connection = new Connection("scott", "tiger");
 Database* db = Database::instance();
 if (!db->connect(db_connection)) {
 cerr << "Unable to connect to database." << endl ;
 } else {
 cerr << “Connection established!” << endl ;
 db->disconnect() ;
 }

 exit(1);
}

- 599- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

The following example codes access a database table called the
Buyer table. Its schema description is given below in figure 5-1.

Name Null? Type
------------------ -------- ----
LocalSystemID NOT NULL NUMBER
BuyerID NOT NULL CHAR(3)
LastName NOT NULL CHAR(35)
FirstName NOT NULL CHAR(35)
MiddleInitial CHAR(1)
PhoneNumber CHAR(25)
EMailAddress CHAR(25)
LeadStatus CHAR(1)
Download CHAR(1)

Figure 5-1. Description of Buyer table.

- 600- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.4.1 Searching a Single Table

The following sample code is the programmatic equivalent to the
following SQL statement:

SELECT LastName, FirstName, EMailAddress FROM Buyer
WHERE LeadStatus = ‘Y’.

This sample is meant to introduce the relationship between the
Condition and Expression classes as well as the relationship
between the SimpleQuery and FetchedRows classes. The code also
introduces the Buyer class from the NARQ library as evidenced
from the third #include statement. The first part of the code is
carried over from the previous example.

In the code, the Condition object is built using a single Expression
object. The Expression object specifies the qualifier, “LeadStatus =
‘Y’”. In turn, the Condition object is used by the SimpleQuery
object along with its corresponding placeholder Buyer object. Once
the SimpleQuery object is passed to the FetchedRows object, the
query is executed - in other words, this is is when the database is
“hit”. Once the query is started, the FetchedRows object controls
the retrieval of successive rows as well as determining whether
additional data exists. The Buyer object contains the information
from each row fetched and using the Column access functions, the
database values can be displayed.

//
// query_buyer.cc - sample application to query “lead buyer” records from
Buyer table
//

#include <stdlib.h>
#include <iostream.h>

#include <narq/Buyer.h>

#include <nora/Column.h>
#include <nora/CharColumn.h>
#include <nora/Condition.h>
#include <nora/Connection.h>
#include <nora/Database.h>
#include <nora/Expression.h>
#include <nora/FetchedRows.h>
#include <nora/SimpleQuery.h>

main() {

- 601- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 //
 // Establish connection to the database
 //

 Connection* gatec = new Connection("scott", "tiger") ;
 Database* db = Database::instance() ;
 if (!db->connect(gatec)) {
 cerr << "Unable to connect to database." << endl ;
 exit(0) ;
 }

 //
 // Instantiate Buyer object
 //

 Buyer* buyer = new Buyer() ;

 //
 // Set up the condition: "Look for lead buyers"
 //

 Expression* expression = new Expression() ;
 expression->compare(buyer->LeadStatusCol(), EQ, "Y") ;
 Condition* condition = new Condition(expression) ;

 //
 // SimpleQuery is used to return information related to a single object
 //

 SimpleQuery* dbq = new SimpleQuery(buyer, condition) ;

 //
 // Provide feedback on the number of rows that will be returned
 //

 cout << "Total number of buyer rows = " << dbq->count() << endl ;

 //
 // The FetchedRows object actually loads the data into the Buyer object
 // and allows iteration through the list
 //

 FetchedRows* rows = new FetchedRows(dbq) ;

 //
 // print out all the buyer names
 //

 while (rows->current() > 0) { // current is negative when error
cout << buyer->LastNameCol()->value() << ", " ;

- 602- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

cout << buyer->FirstNameCol()->value() << " - " ;
cout << buyer->EMailAddressCol()->value() << endl ;

rows->next() ; // fetch the next row of information
 }
 //
 // disconnect from the database
 //

 db->disconnect() ;

 // release the storage for the allocated components

 delete expression ;
 delete condition ;
 delete dbq ;
 delete rows ;
 delete buyer ;
}

- 603- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.4.2 Creating a New Record

The following sample code will create a new record in the Buyer
database table. The only new object in this sample code is the
Sequence class. The Sequence object is used to derive a unique
identifier value for the new record. It is worthwhile to note how
values are “assigned” to columns. They can be assigned by
function call, but most derived Column classes have an assignment
operator defined. Hence, the following two calls are equivalent:

Table->Column(“value”) ; // function call assignment
Table->Column = “value” ; // overloaded assignment

Lastly, after a record has been defined, calling the commit()
member function of the Buyer table object will insert the record
into the database. However, the change is not permanent until the
commit() member function of the appropriate Database or
Connection object is called. Similarly, to cancel the record
insertion, the rollback() member function of the appropriate
Database or Connection object must be called.

//
// create_buyer.cc - simple application to create a new record in the
Buyer table
//

#include <stdlib.h>
#include <string.h>
#include <iostream.h>

#include <narq/Buyer.h>

#include <nora/Column.h>
#include <nora/CharColumn.h>
#include <nora/Connection.h>
#include <nora/Database.h>
#include <nora/NumberColumn.h>

main() {

 //
 // Establish connection to the database
 //
 Connection* gatec = new Connection("scott", "tiger") ;
 Database* db = Database::instance() ;
 if (!db->connect(gatec)) {
 cerr << "Unable to connect to database." << endl ;

- 604- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 exit(0) ;
 }

 //
 // Create a new buyer for insertion
 //

 Buyer* buyer = new Buyer() ;

 Sequnce* seq = new Sequence(“seq_BuyerID”) ;

 buyer->LocalSystemIDCol(seq->next_value()) ;
 buyer->BuyerIDCol(“000”) ;
 buyer->LastNameCol("Doe") ;
 buyer->FirstNameCol("Jane") ;
 buyer->PhoneNumberCol("5105551212") ;
 buyer->EMailAddressCol("jd@anonymous.com") ;
 buyer->LeadStatusCol("Y") ;

 if(buyer->commit()) {
cout << "Buyer 000 (Jane Doe) added to the Buyer

database" << endl ;
 } else {
 cerr << buyer->error_msg() << endl ;
 cerr << buyer->ora_error_msg() << endl ;
 }

 //
 // disconnect from the database
 //

 db->disconnect() ;

 delete buyer ;
 delete seq ;
}

This final sample code is virtually identical to the buyer_query.cc
sample code presented earlier. The differences in the following
sample are manifested in a change to the prepared query and to the
loop that returns the rows returned by the query. The query has
been modified to look for “anonymous” lead buyers. In this case,
anonymous buyers are those defined as having a buyerid value of
“000”. As each row is returned from the query, the delete_row()
member function of the Buyer object is called. This effectively
removes the row once the commit() member function of
appropriate Database or Connection object is called.

- 605- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.4.3 Deleting an Existing Record

//
// buyer_delete.cc - simple application to remove (tag) a record from the Buyer table
//

#include <stdlib.h>
#include <iostream.h>

#include <narq/Buyer.h>

#include <nora/Column.h>
#include <nora/CharColumn.h>
#include <nora/Condition.h>
#include <nora/Database.h>
#include <nora/Expression.h>
#include <nora/FetchedRows.h>
#include <nora/SimpleQuery.h>

main() {

 //
 // Establish connection to the database
 //

 Connection* gatec = new Connection("scott", "tiger") ;
 Database* db = Database::instance() ;
 if (!db->connect(gatec)) {
 cerr << "Unable to connect to database." << endl ;
 exit(0) ;
 }

 //
 // Instantiate Buyer object
 //

 Buyer* buyer = new Buyer() ;

 //
 // Set up the condition: "Look for Lead buyers"
 //

 Expression* expression = new Expression() ;
 expression->compare(buyer->LeadStatusCol(), EQ, "Y") ;
 Expression* expression_2 = new Expression() ;
 expression->compare(buyer->BuyerIDCol(), EQ, "000") ;

 Condition* condition = new Condition(expression) ;

- 606- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 condition->and(expression_2) ;

 //
 // SimpleQuery is used to return information related to a single object
 //

 SimpleQuery* dbq = new SimpleQuery(buyer, condition) ;

 //
 // Indicate the number of rows to be removed
 //

 cout << "Total number of rows to be deleted = " << dbq->count() << endl << endl ;

 //
 // The FetchedRows object actually loads the data into the Buyer object
 // and allows iteration through the list
 //

 FetchedRows* rows = new FetchedRows(dbq) ;

 //
 // print out all the buyer names
 //
 while (rows->current() > 0) { // current is negative when error

cout << buyer->LastNameCol()->value() << ", " ;
cout << buyer->FirstNameCol()->value() << " - " ;
cout << buyer->EMailAddressCol()->value() << endl ;

 cout << endl << buyer->contents(false) << endl ;

// remove anonymous (Jane Doe) buyer
buyer->remove_row() ;

rows->next() ; // fetch the next record
 }

 //
 // commit the change
 //
 db->commit() ;

 //
 // disconnect from the database
 //
 db->disconnect() ;

 // release all of the storage for these components

 delete expression ;

- 607- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

 delete expression_2 ;
 delete condition ;
 delete dbq ;
 delete rows ;
 delete buyer ;
}

- 608- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

3.5 Glossary of Database Terms

Embedded-SQL is a mechanism for including SQL calls in a higher-level programming
language. Currently, Oracle interfaces exist for C, COBOL, FORTRAN and
Ada. The lack of a C++ interface and the performance advantage of using
lower level OCI calls led to the abandonment of its inclusion.

FBI This is an acronym for Field Binding Interface. Referring to an FBI usually
implies a reference to the textual description of a GATEC database object.
FBI files are pre-processed into a database format for later use by a C++ code
generator.

Imakefile A template that is used to generate a Makefile. This allows machine
dependencies to be kept separate from the various items that need to be built.

NARQ This is an acronym for Notes, Acquisitions, Requests for quotes and Quotes.
It refers to the C++ object library containing Oracle-specific access routines.

NORA This is an abbreviation for NARQ ORACLE. It refers to the C++ object
library containing GATEC components.

OCI The Oracle Call Interfaces are a set of lower-level C libraries upon which the
NORA library is constructed. The advantage of OCI is that it leaves the issue
of cursor management to the programmer.

Oraperl Perl access to Oracle databases. See perl.

Perl Perl is an interpreted language optimized for scanning arbitrary text files,
extracting information from those text files, and printing reports based on that
information. This utility was written by Larry Wall and is available from
many internet on-line services.

- 609- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 4 CDFDB Library

The CDFDB library is a set of C++ routines/classes which
interfaces with the Oracle Database. Its main purpose is to handle
incoming and outgoing X.12 transactions which have been
translated into a Common Data Format (CDF). For X.12
transactions going from the GATEC 2 System to the VAN Hub,
CDF files are generated for each transaction type, queued for
translation to X.12 and then sent via electronic mail to the hub. For
X.12 transactions going from the VAN Hub to the GATEC 2
System, the X.12 transaction is received by an inbound Bourne
Shell script, translated to a CDF, processed by the appropriate
CDFDB application and inserted into the database. A transaction
flow diagram is shown in Figure 1.

4.1 Design Intent

The design of the CDFDB library was targeted at bridging the gap
between an X.12 transaction translated into a CDF file and the
NARQ object library which is the database Application
Programming Interface (API) used in the GATEC 2 System. The
NARQ library was designed and developed in parallel with the
GATEC 1 Interim System, put into production in August 1992.
GATEC 1 used the Government Standard Translator (GST) for
translating X.12 documents to and from a CDF file for easy data
manipulation. Files were used to store transaction data instead of a
database. The use of the GST proved to be invaluable in GATEC 1
because it freed the application programmer from having to parse
X.12 and it put the data in a more desirable format. Continued use
of the GST seemed quite in order for GATEC 2. However, its use
created a new problem since the NARQ library was designed and
developed independently from the GST. There was a need to pipe
output from the GST to the database and pipe database output to
the GST. It was then determined that the continued use of the CDF
was also in order despite some overhead disadvantages. A great
advantage to this approach, however, was that it was proven and it
did lend itself rather nicely to handling incoming transactions
(discussed later).

- 610- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.2 Dependencies

The CDFDB library is extremely interdependent on other libraries
and software modules. Remember its design was to act as a bridge
between the GST and the database. Using it for any other purpose
other than the aforementioned renders it completely useless. In
order for the library to compile, it first needs a C++ compiler since
the code is written in C++. It is highly recommended that a Sun
C++ compiler on SunOS be used to build the library because it has
not been ported nor tested on any other platform.

To build a useful application such as GATEC or 843CDFtoDB for
example, several libraries need to coexist in order for the link to be
successful. The Oracle libraries which come with the Oracle
System are probably the most important. Every library or software
module that acts as a client to the database depends on these
libraries.

- 611- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Inbound Flow Diagram

X.12 from
VAN Hub

Inbound
Bourne
Shell
Script

.X.12
 GST

CDF

CDFDB
Application

Database

CDF

Expedite Translation Database
 Insertion

 GST
Outbound
Bourne
Shell
Script

 GATEC 2

Outbound Flow Diagram

CDFDB
Library

Database

User Issues
Transaction

 Generate CDF Expedite Translation
and Transmission X.12 to

VAN Hub

Transmit

CDF

X.12

CDF

Fig. 1 Inbound and Outbound Flow.

- 612- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

The libraries a listed below:

$(ORACLE_HOME)/rdbms/lib/libora.a
$(ORACLE_HOME)/rdbms/lib/libsqlnet.a
$(ORACLE_HOME)/rdbms/lib/liboci14c.a
$(ORACLE_HOME)/proc/lib/libc14.a
$(ORACLE_HOME)/proc/lib/libcgen.a
$(ORACLE_HOME)/rdbms/lib/osntab.o

The next set of libraries which CDFDB depends on is the NARQ
and NORA libraries. These libraries are the object oriented front
end to the Oracle Database libraries. They were written not only to
give the application programmer an object oriented view to the
relational database, but to also simplify data insertion/retrieval and
to minimize requirements to change application code when
changes were made to the schema. NORA contains base classes for
tables, columns, and queries. The NARQ library contains derived
classes for specific tables and columns in the schema. All calls
made by CDFDB are to both NARQ and NORA. None are made
directly to the Oracle libraries. The call hierarchy is illustrated
below:

Nora Library

 Oracle Libraries

CDFDB Library

Narq Library

Fig. 2 CDFDB call hierarchy

For further details of Oracle, NORA and NARQ libraries, refer to
the database section of the GATEC 2 Internal Description and
Maintenance Guide.

The last library needed for a successful build is the tispq (queue)
library. This library contains routines which allow a programmer to
queue CDF's to be processed. These calls are made when a CDF is
waiting to be uploaded to the Legacy System (discussed later) and
translated by the GST. For further detail on the tispq library and
the applications created to monitor a specific queue, refer to the
Queuing section of GATEC 2 System manual.

- 613- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

After the CDFDB library is compiled and linked properly with the
application software, it relies on the GST for its translation
capabilities. Since CDFDB only understands CDF formatted data,
it depends on the GST to translate CDF's to X.12 on outgoing
transactions and X.12 to CDF's on incoming transactions. Without
the GST, transactions could not leave nor enter the GATEC
system.

4.3 Advantages to the CDF Approach

There are many advantages to using a CDF for data processing.
The most obvious is its ease of readability. X.12 is very cryptic and
reading it requires an expert or always having an X.12 Standards
volume at hand. With the use of a CDF, transaction data is laid out
in a simple, easy to read format. Each bit of transaction data is
labeled with the table name and the column name of where this
data maps to in the database and since the tables have been
designed to be self documenting, transaction data is more
comprehensible by the reader. This is especially useful for tracing
transaction flow with the system and debugging programs. The
format of a CDF line is as follows:

%table_name.column_name transaction_data

Also, what's easier to read by a human is also easier to read by a
program. With the CDF, further translation is not required. The
computer process reads the table name and column name and
knows immediately where the data is to be inserted in the database.
This is because of NARQ's unique way of storing a name with
each column and table class.

Another advantage to using CDF's is that it removes the
complexity of X.12 out of the application program and into the
GST which was specifically designed for X.12 translation
purposes. The GST has a workbench which allows the user to
create and watch translations take place (WYSIWYG) and when
completed, the translation can be called by other processes. No
programming in a traditional sense is required. This frees the
application programmer >from having to do tedious X.12 parsing.
It also makes the GATEC system a bit more modular.

- 614- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.4 Disadvantages to the CDF Approach

Although there are many advantages to the CDF approach, there
are also some disadvantages that one must consider. One is the
overhead costs of using GST. Every time a transaction is
translated, there are start-up costs involved which puts a bottleneck
in the transaction delivery. An alternative would be to keep GST
running as a daemon and having a front end server to the GST,
however it would require additional software. There are also
overhead costs associated with using NARQ. The use of NARQ
tends to make gigantic executable files which can create a problem
if disk space is short or the executables need to be shipped across
the Internet. Another disadvantage is the tremendous amount
coordination required between both the application programmer
and the person creating the translation. Often there are
disagreements with what's expected by the CDFDB process and the
GST on required data elements, data names and content.

Overall, the advantages of the CDF approach outweigh the
disadvantages because of the mere fact that it caters more to people
who must maintain the system.

4.5 Short Comings (Implementation)

Cannot handle multiple transactions within a CDF.
Does not check data for proper format.

4.6 CDFtoDB

The purpose of the CDFtoDB class is to process incoming CDF's
and insert the data in the database (hence the name). Part of the
process involved is vendor validation. For each CDF transaction
that is fed to CDFtoDB, the vendor cagecode and government
password is checked against vendor records. If the transaction fails
the validation process, CDFDB generates an 824CDF (Application
Advice) for vendor notification and sends it to the GST for
outbound delivery. If vendor validation succeeds, CDFDB checks
for mandatory data elements for a particular transaction type. If
mandatory data elements were missing from the CDF or there were
problems committing records to the database, CDFDB will exit
with a non-zero exit status and the inbound script will deliver via
email the errors found with the offending CDF and the original

- 615- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

X.12 transaction to the programmer(s) and system administrator(s)
responsible for correction. A flow diagram is shown in Figure 3.

Notify
Person
responsible
 for
correction

Y Y

N N

CDF from
Inbound Script

Check Mandatory
Data Items

Database
Insertion

Exit
non-
zero

Queue
824CDF if
created

Create
824CDF

Commit
records
 to
database

 Got
 all
 mandatory
 items?

 read
 in
 data

CDFtoDB Flow Diagram

Check
Vendor

Vendor
 OK?

Fig. 3 CDFtoDB flow.

- 616- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.7 Interface Description (chk_mand)

NAME

chk_mand

SYNOPSIS

class chk_mand
{
 string tbl_name;
 CM_ENTRY *cm_tbl;
 int size;
 int tbl_index;
 string status_str;
 string ref_tbl_name;
 CDFBCAS_DB_REF_ENTRY *ref_tbl;
 int ref_tbl_size;
 string ref_tbl_index;

 public:
 chk_mand(string, CM_ENTRY*);
 chk_mand(string, CM_ENTRY*, string, CDFBCAS_DB_REF_ENTRY*);
 int find_item(char*) const;
 int set_itemok(char*);
 int set_itemok(int);
 int is_ok();
 void set_status(char*);
 char *get_status() const;
 char *get_next();
 CDFBCAS_DB_REF_ENTRY *get_next_ref_ent();
 int get_index() const;
 string get_tbl_name() const;
 string get_ref_tbl_name() const;
 char *name_to_dbname(char*) const;
};

SYNOPSIS
#include <stdio.h>
#include <iostream.h>
#include "common.h"
#include "chk_mand.h"
#include "cdfdb.h"

int CDFtoDB(Database *db, TBL_PTR_ENTRY *tbl_ptrs,
 int tbl_size, short doctype, chk_mand *cm_obj)

- 617- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

DESCRIPTION

CDFtoDB() expects five arguments. The first argument is a pointer
to the database class. It assumes that a successful connection has
been made to the remote database server. For further discussion on
the Database class, refer to the NORA library section of the
GATEC 2 System manual. If the connection has not been made, it
will return a -1 to the calling routine because of failure to get a
sequence number from the database. The message it will write to
standard error is as follows:

fill_docids(): unable to get DocumentId sequence
CDFtoDB(): fill_docids() failed

The second argument is a pointer to a table or list of table pointer
entries. CDFtoDB() assumes at least one table entry that has been
initialized. Generally, there will be more than 1 table because
there's been great effort in the GATEC database design to keep
transaction data normal. The third is the number of table entries in
the list. If there are zero entries, the process will produce
unexpected results. The fourth is the document type (i.e. 843, 864,
etc.). Unfortunately, CDFtoDB() needs to know which document
type its inserting so it knows to bypass vendor validation on
transactions not requiring it (i.e. 824's and 838c's). The last
argument is a pointer to the chk_mand object (class declaration
shown above). This object contains a list of data items that are
determined to be mandatory for a particular transaction type.
CDFtoDB() checks off items that have been found in the document
read in. If any of the items have not been checked off, it will
display which data items are missing and return -1 to the calling
routine.

ERRORS

CDFtoDB() returns OK or 0 if the CDF has been processed
successfully.
On failure, CDFtoDB() will return one of the following:

ERR General programming error (-1).

RECOMMIT_ERR Record Commit Error. This will occur when
there is a failure on the first phase commit or
when there are mismatching ids (3).

DBCOMMIT_ERR Database Commit Error. This will occur
when there is a failure on the second phase
commit (4).

CAGECODE_ERR CageCode error. This will occur when the
cagecode specified in the transaction could

- 618- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

not be found in the database (6).

GOVTPASSWORD_ERR Government Password error. This
will occur when there was an incorrect
government password given with the
cagecode specified in the transaction (7).

NOVENDOR_ERR No Vendor error. This will occur when the
Vendor table was not found in the list of
tables (8).

NOVALIDINFO_ERR No Valid Information error. This will
occur when both Cagecode and Government
password are incorrect (9).

4.8 Creating New Applications for New Document Types

Creating a CDF insertion program for a new transaction type is
quite easy, assuming that the tables have been created in the
database and the NARQ code has been generated to accommodate
them. The best approach would be to modify an existing program
such as 843CDFtoDB.cc in this document. Writing a program from
scratch can be very time consuming and prone to error. An
advantage to using the CDFtoDB() is that its been in production for
nearly 1 year and most if not all bugs have been addressed.

To create the program using CDFtoDB(), you need to first include
the .h files from NARQ that represent the tables used. For
example, lets say we're trying to create a program to process 810
CDF's. If the CDF contains data for the Contact table, Document
table, etc., then you need to include them at the top of your .cc file:

#include <narq/Contact.h>
#include <narq/Document.h>
#include <narq/FreeOnBoard>
#include <narq/OriginalTransaction>
#include <narq/ShippingDocPackage>
#include <narq/TransactionSent.h>
#include <narq/Vendor.h>

Next, you need to list all the data items that are required by the
database. So for example, if the CageCode and GovtPassword
fields of the Vendor table are required, you would have the
following as your status table declaration:

// Status table declaration

- 619- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

CM_ENTRY CDF810_status[] =
{
 { 0, "Vendor.CageCode", 0 },
 { 0, "Vendor.GovtPassword", 0 },
 { EOT, "", 0 }
};

The next step would be to instantiate all the objects used by the
program.Each table object instantiated would be pointed by tbl_ptr
within the TBL_PTR_ENTRY struct:

typedef struct
{
 boolean modified; // Set when modified by incoming data.
 boolean hold; // Set when table should not be cleared.
 boolean commitable; // Set when allowed to be committed to
the database
 Table* tbl_ptr;
}TBL_PTR_ENTRY;

The modified flag is set when data has been read in and put into
the table object pointed to by tbl_ptr. The hold flag is defaulted to
FALSE but should be set to TRUE if you wish for tbl_ptr to be
static (not cleared by clear_tables ()). The commitable flag is
defaulted to TRUE, however, if you want the table as just a place
holder for data and not a record to commit to the database, set it to
FALSE.

// Instantiate all the necessary table objects

tbl_ptrs[0].tbl_ptr = new Contact();
tbl_ptrs[1].tbl_ptr = new Document();
tbl_ptrs[2].tbl_ptr = new FreeOnBoard();
tbl_ptrs[3].tbl_ptr = new OriginalTransaction();
tbl_ptrs[3].hold = TRUE;
tbl_ptrs[3].commitable = FALSE;
tbl_ptrs[4].tbl_ptr = new ShippingDocPackage();
tbl_ptrs[5].tbl_ptr = new TransactionSent();
tbl_ptrs[5].hold = TRUE;
tbl_ptrs[5].commitable = FALSE;
tbl_ptrs[6].tbl_ptr = new Vendor();
tbl_ptrs[6].hold = TRUE;
tbl_ptrs[7].commitable = FALSE;

Since tbl_ptrs is an array, the size of it needs to be set. In this case,
it would be set to 8. Please make sure its the right size because it
can be easily overlooked. The entire program depends on the
proper list size and getting it wrong can cause all kinds of havoc.

const int tbl_size = 8;

- 620- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Also, we want to set doc_type to the proper document type:

short doc_type = 810;

And that's it. There may be a few exceptions depending on the
transaction type but for the most part, the programming is
complete. If you used an existing CDFtoDB program as a template,
you may want to change all references to the old transaction type
(i.e. "843" to "810").

4.9 Existing Applications

The existing applications which use CDFtoDB() are 843CDFtoDB
for handling Responses to Request for Quotations (843),
864CDFtoDB for handling incoming Text Messages (864),
838cCDFtoDB for processing Trading Partner Profile
Confirmations (838c) for registering vendors at the site, and
824CDFtoDB for handling Application Advice transactions (824).
All programs are very similar with a few small exceptions. They
all read stdin for input, connect to remote database server and have
two command line options. The options are as follows:

OPTIONS

 -t Puts program trace on for debugging purposes.
 -p Sets the production flag on so outgoing transactions get queued
 for translation and mailed.

FILES

 ~gatec2/etc/dblogin to get login info for active database.

To help the reader get a better feel of these programs, comments on
each are provided below:

4.9.1 843CDFtoDB

This is by far the popular program since there are hundreds of
Responses to Request for Quotes coming into the GATEC system
each day. It is also the most generic and probably the best example
to use for creating your own insertion program.

- 621- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.9.2 838cCDFtoDB

This program is used occasionally when a vendor registers.
CDFtoDB() knows not to check for cagecode and government
password since it is a vendor registration program. The only other
exception is the logic used to set Vendor.TemporaryCol and
Vendor.DateAssigned.

4.9.3 824CDFtoDB

824CDFtoDB is another fairly generic program. CDFtoDB() also
knows not to check for cagecode and government password
because its not really necessary on Application Advice. It wouldn't
be bad to use 824CDFtoDB as an example or a template for
creating your own program.

4.9.4 864CDFtoDB

864CDFtoDB would appear to be quite similar to the other
programs but in actuality, it's a bit different. There is some special
handling for 864CDF's which can be found in the readin_data()
routine. Since an 864 can have looping segments, multiple records
of the same type needed to be inserted into the database. In order to
handle it, readin_data() needed to do intermittent phase 1 commits.
When a table has been completely read in, the 864CDF will
typically have a tablename.commit line which will follow the data.
This tells the CDFtoDB program to issue a phase 1 commit. For
example, if you had the following multiple segments in your 864
transaction:

PER*IC* DEWEY STAATZ*TE*(719) 473-8896
PER*IC* DEWEY STAATZ*TE*1-800-359-4157
PER*IC* DEWEY STAATZ*FX*(719) 632-7900

The GST would translate it into the following CDF format which
contains the intermittent commits:

%Contact.Name MARK N. LYNCH
%Contact.PreferredAccess TE
%Contact.PhoneNumber 919-483-1212
%Contact.commit

- 622- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

%Contact.Name MARK N. LYNCH
%Contact.PreferredAccess FX
%Contact.FaxNumber 919-483-4083
%Contact.commit

The CDFtoDB program would do the commit on the first
occurrence, clear out the memory, read in the next record and do
the commit. If all phase 1 commits were successful, the program
will do the second phase commit. Otherwise, the program would
do a rollback and exit with the appropriate error code.

4.10 Short Comings

New program has to be created for each document type.

4.11 DBtoCDF

The purpose of the DBtoCDF() class is to generate CDF's for
outbound translation and delivery. DBtoCDF gets executed when a
user issues Request for Quotes (RFQ) or Awards to be delivered to
a VAN. DBtoCDF assumes a list of table objects with data and a
list of data elements that are mandatory in a particular X.12
transaction. Upon execution, DBtoCDF checks the table list
against the mandatory data element list. If any elements are
missing, CDFtoDB returns the missing item list to the calling
routine so it can be displayed to the user. If all mandatory data
elements are present, DBtoCDF opens a temporary file in
~gatec2/tmp. The name of the temporary file is determined by the
CDF type (i.e. 840ZAAa09485 for 840's, 850XAA12213 for
850's). If all is well with opening the file, DBtoCDF will print
special headers (shown below) at the beginning of the file to
further describe it. The outbound delivery script uses these headers
to determine which CDF to X.12 translation to use. After printing
the headers, DBtoCDF begins printing the contents of each table to
the file. While printing, it sorts each table by column name. When
completed, DBtoCDF will queue the CDF file for delivery but only
if the CDF is not an 850CDF. If it is an 850 CDF, it is put on a
different queue (discussed below). DBtoCDF flow is shown in
Figure 4.

- 623- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Table List
and mandatory
item list

Open CDF file
in ~gatec2/tmp

Print Data and
check file

Queue
file

 Got all
mandatory
 items?

 Sort
 contents
and print
 data to
 file

Return
error for
display

Queue
file to
Outbound
queue

DBtoCDF Flow Diagram

 Return
 missing
 item list
 for
 display

Success
 in
 opening
CDF file?

 Is
not
850?

Y

N
N

Y

N

Y

Fig. 4. DBtoCDF flow.

- 624- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.12 Interface Description for DBtoCDF()

NAME

DBtoCDF()

SYNOPSIS

 #include <iostream.h>
 #include "common.h"
 #include "chk_mand.h"
 #include "cdfdb.h"

 DBtoCDF(chk_mand *cm_obj,
 char *file_template,
 char *hdrs,
 TBL_PTR_ENTRY *tbl_ptrs,
 int tbl_size,
 short doctype,
 char *order_statements)

DESCRIPTION

DBtoCDF() expects 7 arguments. The first argument is a pointer to
the chk_mand object which must be instantiated in the calling
routine. This object will contain a list of mandatory data elements
for a particular transaction type and member functions to update a
check list. The file_ template argument is the name of the
temporary file created. The name will typically be the type of CDF
(i.e. "840", "850"). The hdrs argument is the header string which
the caller wishes to put at the head of the CDF file created. A
typical header for a CDF will look like this:

%Xbegin
%Xpurpose Award
%Xfilename 850CDF
%Xdestination_host translator
%Xversion 2
%Xdate 93 07 14

The outbound delivery script uses the %Xpurpose line to determine
which CDF to X.12 to use. The fifth argument, tbl_size, is the
number of tables in the list. Its very important that this argument is
correct since nearly all the DBtoCDF code depends on it. Doctype
is the type of document (i.e. 840, 850), and order_statements is the
statement of order declaration. Order_statements typically appear
in an 850. If order_statements are not needed, DBtoCDF will
accept a NULLSTR for in its place.

- 625- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.13 Creating routines for new document types

Having front end routines to DBtoCDF() which accept pointers to
individual table objects were originally designed to let the GATEC
application programmer know what table objects were expected for
a particular transaction type. They are not necessary since
DBtoCDF() can be called directly, however, it is recommended
that this approach be taken to minimize table type confusion and to
better associate database tables with transactions sent to VAN's.
The best way to create a new routine is to use one that already
exists. 840DBtoCDF() would be a good example. Let's say we're
trying to send an 810 transaction this time. We would include the
.h files representing each table object in our 810DBtoCDF.cc file
and the list of required data elements for the 810 transaction. The
EOT at the end of the CDF810_status list signifies the end of table.

#include <narq/Contact.h>
#include <narq/Document.h>
#include <narq/DocumentSent.h>
#include <narq/GSDefaults.h>
#include <narq/ISADefaults.h>
#include <narq/FreeOnBoard>
#include <narq/ShippingDocPackage>

// Status table declaration

CM_ENTRY CDF810_status[] =
{
 { 0, "FreeOnBoard.FOBType", 0 },
 { 0, "FreeOnBoard.FOBDescription", 0 },
 { 0, "FreeOnBoard.FOBAcceptancePoint", 0 },
 { 0, "FreeOnBoard.FOBAlternateInspection", 0 },
 { 0, "FreeOnBoard.FOBInspectionPoint", 0 },
 { 0, "ShippingDocPackage.DocDeliveryMethod", 0 },
 { 0, "ShippingDocPackage.DocumentType", 0 },
 { EOT, "", 0 }
};

The function prototype would look like this:

int _810DBtoCDF(chk_mand* cm_obj,
 Contact *con,
 Document *doc,
 DocumentSent *ds,
 GSDefaults *gsd,
 ISADefaults *isad,
 ShippingDocPackage *sdp)

- 626- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Notice how everything above is sorted. This helps in making sure
all the necessary components are included in this .cc file. It also
helps the GATEC application programmer in making sure the call
to this routine has all the necessary arguments and that they're in
their proper order. Putting each argument on a separate line helps
the reader easily know what's expected. It's probably a good idea to
mention in a comment block that your routine expects instantiated
objects with transaction data in them. If any of objects in the
parameter list is not instantiated, DBtoCDF() will most likely core
dump. If you have an instantiated object passed to your routine, but
there is no data, only the table name will get printed to the CDF.
The next step would be to store each table in an array since
DBtoCDF() works with the array (or list of table objects) to create
the CDF. Its very important that the numbers (i.e. the size of
tbl_ptrs and the indices upon assignment) are correct.

 string hdrs;
 TBL_PTR_ENTRY tbl_ptrs[6];
 char cdf_filename[MBUFSZ];
 short doctype = 810;

 // This way is acceptable by CC and gcc

 tbl_ptrs[0].tbl_ptr = con;
 tbl_ptrs[1].tbl_ptr = doc;
 tbl_ptrs[2].tbl_ptr = ds;
 tbl_ptrs[3].tbl_ptr = gsd;
 tbl_ptrs[4].tbl_ptr = isad;
 tbl_ptrs[5].tbl_ptr = sdp;

Again, if you used an existing DBtoCDF routine, you may want to
change all document references from the old document type to the
new document type (i.e. "840" to "810").

4.13.1 Applications using DBtoCDF

 GATEC so far is the only application that uses DBtoCDF routines.
When a buyer issues an RFQ from the Review RFQ screen,
840DBtoCDF() is called to create the 840CDF to be queued for
outbound delivery to the VANs. Only when a CDF has been
successfully created and queued will GATEC commit its records to
the database. Otherwise, the user will be notified of the problem in
issuing the transaction. When the buyer issues an award from the
Award screen, 850DBtoCDF() gets called. This front end routine
creates an 850CDF for awarding the winning bidder, an 836CDF
for notifying the PUBLIC of the winning bidder, and calls

- 627- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

BCASCDFtoDB() to create a BCASCDF for updating BCAS
(BCASDBtoCDF explained below). 850DBtoCDF() is a special
case routine which diverges from the normal DBtoCDF front end.
These three DBtoCDF routines were the only ones used in the
production system. 864CDFtoDB() was not used in GATEC for
reasons explained in the DBtoCDF Short Comings section of this
document.

To help the reader get a better feel of these routines, comments on
each are provided below:

4.13.1.1 840DBtoCDF

This is routine is very generic and would be a good example to
follow if you needed to generate another CDF type. The call
requires that all objects be instantiated and has data in them. The
programmer is responsible for deleting the objects after the CDF
has been generated. An example of the call can be found in:

 ~user/dui/src/applications/applications/gatec/Review_RFQ.C

4.13.1.2 850DBtoCDF

This routine is sort of a three in one routine. In other words, 3
CDF's get created from one set of Award tables. This is a special
case routine so it is probably not a good idea to use if you are
writing your own CDF generation routine. 850CDFtoDB() will
create 3 CDF's (850, 836, BCAS) as long as its not a transaction
cancel. If it is a transaction cancel, only the 850 and 836 CDF's get
created because the BCAS cancel CDF was already generated by
the caller. In both cases, nonetheless, queadditem() gets called
which handles monitoring whether or not the BCASCDF upload
was successful. The 850CDF transaction only gets put on the
outbound queue if the upload was successful. For further details of
how queadditem() operates, refer to the "q" man page. An example
of the call can be found in:

 ~user/dui/src/applications/applications/gatec/Award.C

- 628- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.13.1.3 BCASDBtoCDF

This routine is called by 850CDFtoDB() to generate the
BCASCDF for uploading Award information to BCAS. It made
sense to have 850CDFtoDB() call it because it uses a subset of the
database tables used to generate the 850CDF and it only required
one call made by the GATEC application. Since the BCASupload
script uses a GATEC 1.0 formatted CDF, BCASDBtoCDF() uses a
cross reference table for its translation. This was done so the
BCAS upload script did not require changes to accommodate the
new CDF format (introduced in GATEC 2.0). The cross reference
table can be found in BCASCDFtoDB.cc.

4.13.2 DBtoCDF Short Comings

The DBtoCDF routines do not handle lists of tables. This means
that a CDF can only have one occurrence of a table type.

4.14 Building and Testing

Assuming the dui source directory has been checked out, cdfdb
source is located under ~user/dui/src/cdfdb. Before anything can be
compiled, the Makefile needs to be made. To do so, type in:

xmkmf -a

After the Makefile has been made, you can make each application
individually (i.e. make 843CDFtoDB) or make them all (make all).
With a "make all", libcdfdb.a will be installed in ~user/dui/lib and
the applications will be in the ~user/dui/src/cdfdb. To remove all
the .o files and the executables,
type in:

make clean

To install the CDFtoDB programs in ~gatec2/bin, type in:

make install

One thing to remember. If you added any .cc file and you need to
modify the make in order to build it, make sure you modify the
Imakefile. After you have done so, you need to do a xmkmf -a to
make the Makefile again.

- 629- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

4.15 CDFDB Unit Testing

To test CDFtoDB programs, use the -t to view the trace output. For
example, if you want to see if an 824CDF will process and commit
to the
database, type in:

cat 824CDF|824CDFtoDB -t

For testing 840DBtoCDF(), type in:

 test -d4 -t

For testing 850DBtoCDF(), type in:

 test -d5 -t

4.16 System Testing

Refer to the GATEC system test procedures.

4.17 System Install

Refer to the GATEC installation instructions.

4.18 Diagnostic Error Messages

When a CDFtoDB program fails for one reason or another, mail is
sent to a person responsible for correction. The mail message
contains a the original X.12 transaction, the CDF created from this
transaction, and the error produced by the CDFtoDB program. To
change the recipient(s) of these mail messages, the inbound Bourne
Shell script needs to be modified. For further details on inbound,
refer to the Transport section of this document.

- 630- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

- 631- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 5 Transport

The transport software is located at $CVSROOT/transport in the
GATEC development environment. Since all modules are Bourne
Shell scripts they do not need to be compiled; instead, one may
simply install them in a desired directory location The transport
subsystem primarily consists of the scripts inbound(1),
outbound(1), and the archive mailbox. This page serves as an
outline that will first describe the transport's role and an overview
of the general approach used. Next the page will focus on the
current architecture of inbound(1) and outbound(1). Finally, the
page will briefly look at future enhancements and alternative
solutions.

5.1 Transport Overview

The GATEC transport system transmits or receives the Electronic
Data Interchange(EDI) data to/from the Electronic Commerce EDI
Hub (ECEDI) for the GATEC application. The transport system
also translates the EDI data to/from the Common Data Format
(CDF) used in the GATEC application using the Government
Standard Translator (GST). When the GATEC application releases
an EDI transaction, it queues to the outbound queue, by using the
lpr(1) command with a CDF file. The lpd(8) invokes the
outbound(8) script that routes the CDF file to the correct GST
translation, where the GST translator converts the file into an EDI
message. Finally outbound(1) script mails the EDI message to the
ECEDI hub for delivery. Sendmail(8) places an inbound edi
message on the inbound queue via lpr(1). Sendmail accomplishes
this by using an alias for the site_id on the machine i.e.: f33601:
archive, "| /home/gatec2/bin/input". The script input(1) finds a
queue with space. If space cannot be found, the message returns to
the hub and will be tried again later. When lpd(8) starts inbound(1)
script, the first the script performs a 997 syntax check on the EDI
message using the GST(1) translator, and follows with an 824
semantic check, if the EDI message passes both checks. The script
again calls the GST(1) translator to convert the EDI message into a
CDF file. Finally the script calls the appropriate CDFtoDB to insert
the CDF file into the database. Should the database be down the
inbound(1) script will retry inserting the CDF file using the at(1)

- 632- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

command with the cdfretry(1) script at a later time.

Using a standard mailbox named archive accomplishes the task of
archiving both inbound and outbound EDI messages for the
GATEC system. Simply placing archive on CC: line or including it
within an alias places messages into the archive. Anybody can
review (but not update) the archive mail box using any standard
electronic mail user agent. Each day the archive mailbox gets
rolled over to an archive directory called ~archive/archive.
Periodically the ~archive directory gets compressed to recover
space. Finally the older archives will move over to a permanent
storage medium and be removed from the system.

5.2 Transport Approach

The decision to use Bourne shell scripts and existing system
utilities like lpd(8) and sendmail(8) in the transport subsystem
came as a result of several factors. The biggest factor in using the
Bourne shell, was the dynamic nature of the GATEC project itself.
As other GATEC components evolved, the transports requirements
changed. Frequently the transport subsystem served as the warning
system for errors either going into or coming from the GATEC
system. Since the transport system didn't manipulate either the EDI
or CDF data, but rather functioned as switch or pipeline, made
Bourne shell an easy choice. The election of Bourne over kinds
shell's was simply makes it the most portable across UNIX
platforms. Execution speed of the transport is not a critical factor,
since it is not an interactive process with live users awaiting any
update.

The approach to use lpr(1)/lpd(8) as the queuing mechanism was
three fold, first a unique spooling/queuing system didn't not have to
have to be written. Second managing the lpd(8) spooler should be
known to most system administrators and require no special
training. In fact, one could say it's easier, since this "printer" never
needs paper. In the event of a system V port, the same approach
can be used, by only changing "printer" configuration.

The ECEDI approach of enclosing EDI messages within email
envelopes made sendmail(8) a natural choice. Since it is the mail
transport agent that comes with most UNIX platforms. The
GATEC transport subsystem can use the sendmail(8) infrastructure
without developing any special code. In the event of moving the
GATEC transport system to another platform that has a different
mail transport becomes a trivial exercise. The system administrator
doesn't require any special training, since managing sendmail is
usually a part of the normal duties.

- 633- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Using a standard mailbox for archiving came as a natural extension
of the ECEDI approach to electronic mail enabled EDI. Archiving
used the existing electronic mail infrastructure, to fulfill the
archiving requirement with little programming effort. The
electronic mail header already contains to/from destinations,
timestamping, and unique message id, necessary for archiving.
Finally using the standard electronic message format allows
anyone to use their favorite email user agent(or none) to look at the
archive data, without requiring any special training.

5.3 Addressing

The email header information is generated by GATEC at the Site.

To:
<@ec099.llnl.gov:/PN=Joan.Dennis/DD.ID=jomarcomp/O=ATTEDI/@sm2att.llnl.gov>
Bcc: archive,archive@ec099.llnl.gov
Subject: 997:F3360193Q1911001

By reading this header, you can tell that this email message
header was generated on the Wright-Patterson Site IGP as a X12
Functional Acknowledgment (997) in response to a quote given
to Wright-Patterson (F33601) in response to Request for Quote
#93Q1911, line item #1 submitted by a vendor (jomarcomp)
using the ATT VAN, which is connected to the Livermore Hub
using X400 mail.

Following is a detailed decomposition of each field on each line.

Line 1:

In the To: line, the @ec099.llnl.gov field is the Internet mail
address of the Livermore Hub. All mail generated by the GATEC
system sends outgoing mail to the Livermore Hub via the
Internet using SMTP.

The last field in the mail header (@sm2att.llnl.gov) is routing
information used after the SMTP mail arrives at the Hub. Since
we know that ATT uses X400-based mail, we have to send the
incoming SMTP mail to the SMTP gateway for conversion to
X400-based mail. The name sm2att is the identification for the
SMTP-to-X400 gateway for ATT.

The remaining fields only appear on mail messages intended to
be sent to X400-based VANs. They are defined by the X400 mail
standards and are further defined in the Retix X400 gateway

- 634- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

software description. The DD.ID= field is the X400 Domain
Define.Identifier field, which is assigned to the name that the
vendor electronically registered under. The PN= field is the
X400 Personal Name field and is the name of the contact person
at the registered vendor. Therefore, /PN=Joan.Dennis/DD.ID=
jomarcomp indicates that the vendor to whom this mail message
is directed is JOMAR Computer Supplies, 2106 Winslow Drive,
Orlando, FL. The sales contact at that address is Joan Dennis.

Line 2:

The Bcc: line (Blind Carbon Copy) indicates that a complete
copy of this message is to be sent to two additional mailboxes;
one which is named archive at Wright-Patterson and one named
archive at the Livermore Hub (ec099.llnl.gov). This allows both
the Site IGP and the Hub to archive all mail traffic going through
the GATEC system as well as the Hub for later audit purposes.
Incidentally, it is the GATEC software that creates this line that
would change to add DAASC to the mail distribution.

Line 3:

The Subject: line is used for email routing and transaction
recognition at the Hub. The Hub actually readdresses mail sent
from the VANs based on the contents of the Subject line. There
are two fields in the Subject line; the X12 transaction set number
and the Unique Tracking Number. The 3 digit X12 transaction
number (840 for Request for Quote, 843 for Response to Request
for Quote, 850 for Purchase Order or Delivery Order, etc) allows
the Site IGP to recognize the transaction type before translating it
in preparation for loading it into the local database. The Unique
Tracking Number is composed of the concatenation of the
Buying Site Id (AKA the DoD Activity Address Code - the
DODAAC), the Solicitation Number and the Line Item Number.
The Site ID (Wright-Patterson ASC/PKW is F33601) is used for
routing on mail received from a VAN on its way to the Buying
site. This is shown in following figure.

- 635- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Hub

TO: vendor @ VAN
FROM: GATEC @ hub
SUBJ: Set:UTN

TO: GATEC @ hub
FROM: vendor @ VAN
SUBJ: Set:UTN

TO: vendor@VAN via hub
FROM: GATEC @ SiteID
SUBJ: Set:UTN

TO: GATEC @ SiteID
FROM: vendor@VAN
SUBJ: Set:UTN

UTN = Site ID + Solicitation Number + Line Item

ie., F33601 + 93Q1911 + 001 = F3360193Q1911001

Hub Addressing for 1-to-1 Messages

Readdress

Readdress

Hub Addressing for 1-to-1 Messages

5.4 Outbound

NAME

outbound converts CDF files into outbound edi messages.

SYNOPSIS

outbound

DESCRIPTION

outbound is invoked by lpd(8) daemon after an outbound CDF file
is placed in the queue. outbound first determines the type of CDF
file it received and invokes the correct translation that turns the
CDF into a x12 message. After the GST translates the CDF file
into x12. outbound uses the GST to syntax check the x12 message
using the same 997 translation that the inbound(1) uses. If the
message fails syntax check, all the data including the 997 output is
mailed to gatecmgr. Otherwise outbound shells the output from the
GST and checks the return code. If output exits non-zero a

- 636- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

message containing the CDF file and GST output is sent to the
gatecmgr mailbox for correction.

INTERNAL DESCRIPTION

Determine where to find translation table directories, where to
place temp files and build environment.

Extract the type of CDF file from the %purpose field in the CDF
file.

Change directory to the correct translation for this CDF file.

Translate CDF into EDI message contained within a mail envelope
and the mail transport command.

Change directory to the 997 translation.

Syntax check the EDI portion with the GATEC 997 translation
(syntax check)
using GST.

Shell the output file from the translator, since it contains the mail
transport commands.

Clean up and exit.

NOTE:

After each of the above steps, the script verifies exit status for
correctness. Anytime the script encounters an error for instance,
there is no output from the translator, or a translation table doesn't
exist. The CDF file and any available temp files or other
information is mailed to the gatecmgr mailbox for manual
correction.

SEE ALSO

GST(1), BUGS

Shell metacharacters sometimes explode the GST output.

5.5 Inbound

NAME

inbound converts site received edi email messages into database

- 637- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

records

SYNOPSIS

inbound

DESCRIPTION

inbound is typically invoked by lpr(1) whenever an email message
is delivered to a gatec site. inbound will use the GST to generate an
997 acknowledgment if the received message requires one. If the
incoming message passes the 997 syntax check, next inbound will
again call the GST check the semantic content and produce an 824
rejection, should the semantic inspection fail. The last call to the
GST translates the inbound edi message into the CDF format used
by the gatec project. Finally the inbound invokes the appropriate
CDFtoDB database insert program. If the CDFtoDB program exits
with database not available error. inbound calls at(1) to invoke
cdfretry(1) in one hour to attempt to insert the CDF file into the
database. When inbound detects an error anywhere during the
process, a message and the incoming edi message gets sent to
gatecmgr for human correction.

INTERNAL DESCRIPTION

Determine where to find translation table directories, where to
place temp files and build environment.

Determine EDI message type from EDI and message originator
from mail header.

if Message type equals 997 or 838 goto alltocdf translation.

Change directory to the 997 translation (syntax check).

Syntax check the EDI portion with the GATEC 997 translation
using GST.

Send 997 acknowledgment back to originator.

If message doesn't pass syntax check exit

Change directory to the 824 translation (semantic check).

Syntax check the EDI portion with the GATEC 824 translation
using GST.

If message doesn't pass semantic check exit

Change directory to the alltocdf translation (convert edi to CDF).

- 638- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Translate EDI message to CDF file.

Select appropriate CDFtoDB insert program based on EDI
message type.

Execute CDFtoDB program. If database down invoke cdfretry
using at(1) later.

Clean up and exit.

NOTE:

After each of the above steps, the script verifies exit status for
correctness. Anytime the script encounters an error for instance,
there is no output from the translator, or a translation table doesn't
exist. The CDF file and any available temp files or other
information is mailed to the gatecmgr mailbox for manual
correction.

SEE ALSO

GST(1), input(1)

BUGS

SunOs 4.1.3 lpr(1) has an undocumented limitation of 1000 files
that it can spool at one time. input(1) works around this limitation
by retrying one of 3 input queues when it encounters an error
trying to lpr to an inbound queue. In the event that input(1) fails,
the message returns to the hub and is retried later.

- 639- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

5.6 Transport Support Software

The following software supports transport activities at the site

NAME

5.6.1 input

NAME

input places message on inbound queue

SYNOPSIS

input [input]

DESCRIPTION

sendmail(8) invokes input when an incoming edi email message
arrives for the GATEC system. input places incoming mail
messages on an available lpr(1) queue. This script works around a
SUNOS limitation of a 1000 files on the same queue. Input tries an
inbound queue, if it gets an error return it will try the next, until it
exhausts the list. If it fails to insert the inbound mail message on
any queue it exits non zero. When sendmail(8) receives a non zero
error back from input it returns the undelivered message back to
the ECEDI hub, where the message will be retried at a later time.
Presumably after the inbound queues have drained some.

SEE ALSO

inbound(1), lpr(1), lpd(8), sendmail(8)

BUGS

Currently configured for 3 inbound printers.

- 640- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

5.6.2 newsyslog

NAME

newsyslog - syslog and gatec archive mover

SYNOPSIS

newsyslog [newsyslog]

DESCRIPTION

cron(8) executes newsyslog everyday around midnight to move the
sendmail(8) log file and the archive mailbox to the archive
directories under ~archive. After the log files and archive has
moved the files are erased and sendmail(8) is restarted. As a
secondary function of newsyslog, the script goes to ~gatec2/tmp
and removes old temp files that are currently being kept around for
a period of time for debugging purposes. This function will go
away in some future release.

SEE ALSO

cron(8), sendmail(8), transport(1)

- 641- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

5.6.3 cdfretry

NAME

cdfretry retry to insert cdf file into the database

SYNOPSIS

 cdfretry [cdfretry CDF_FILE attempts]

DESCRIPTION

The at(1) batch processing daemon invokes cdfretry at the
scheduled time to again attempt to insert an already translated x12
transaction in CDF format into the database. Presumably because
the database was down in the previous attempt(s). cdfretry expects
the name of the CDF insertion program for the type of CDF file
contained in CDF_FILE. If cdfretry succeeds it removes
CDF_FILE and quietly goes away. Otherwise cdfretry bumps up
the attempts and re-queues itself with at(1) to try again later. After
10 tries, cdfretry will send the CDF_FILE to gatecmgr for manual
processing.

OPTIONS

name of the CDFtoDB executable CDF_FILE temp file containing
a translated x12 message into common data format. attempt
number of tries so far to insert this record into the database.

SEE ALSO

at(1), inbound(1)

5.7 Future Enhancements

The transport scripts need some cleanup, the first thing to do would
is to compile the GST(1) translations and load them with the
translator engine module to produce single translation binaries for
each translation. Once the translation is an executable, the transport
scripts can get rid of the overhead of having to change directory for
each translation. Next the scripts need to be better modularized and
use some shell procedures to reduce some the of the redundant
code. Finally, some changes to the code to make it a little more

- 642- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

readable and perhaps a bit more understandable. Another nice
feature would be a single utility to properly setup the GATEC
environment with all the necessary things.

In the area of consistency and accuracy, the transport needs a better
coupling with both the database and the archive to insure that all
messages are correctly sent or received and errors accounted for.
The current architecture lends itself to a fire and forget solution.
After the GATEC application releases a CDF file for conversion
and transmission, the transport doesn't update the database of
success or failure. Also the transport system doesn't verify archive
records with the database on incoming transactions. Perhaps an
future redesign of the GATEC system could combine the
CDFtoDB and transport functionality into single inbound and
outbound daemons that could have a tighter coupling with the
database and eliminate the need for the CDF<->EDI translations
and move to DB<->EDI translations.

5.8 Configuration Dependencies

Although the GATEC transport subsystem lacks a central
configuration file to pick up it's environment. Both inbound(1) and
outbound(1) initialize the same way. The top of each script holds
all the path dependent parameters, in which the scripts sets into
temporary variables. The scripts get the gatec2 home directory
from the passwd(5) file. The scripts create their temp files under
the ~gatec2/tmp directory. The translations used by the GST(1) are
found under the ~gatec2/lib/gst directory. When the script
encounters an error condition it sends as much data as it knows
about to the gatecmgr id for manual correction. In order to
configure a new address, change the OOPS_ID variable to the new
value.

For installation instructions for the GATEC transport subsystem
refer to the GATEC Operations Manual.

- 643- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

SECTION 6 GATEC 2 Test Matrix

The GATEC system is tested with the matrix shown below. If all
testing criteria are met, the GATEC software is said to be operating
nominally. Observe that this implicitly verifies that the software
modules described in sections 1-5 are executing correctly.

6.1 The Matrix

GATEC TEST PROCEDURE (version 1.4)

NOTE:
It is suggested the following tests be performed on a recently
exported copy of the current WP database

 OK

Issue 5 RFQ's
Fill in manufacturer field (make sure it sticks)
Fill in part number field (make sure it sticks)
Make sure RFQ date is current date
Make sure priority class matches day on street time
PRI 1-3 response date 4 days
4-9 response date 5 days
rest response date 5 days

Make sure delivery date is appropriate to the priority
PRI 1-3 7 days delivery
4-9 delivery in 30 days
rest delivery in 30 days

Make sure delivery date/response date does not fall on weekend or
holiday
Make sure item description has no missing text
Make sure RFQ number exists and correct
Make sure line item number exists and is correct
Make sure requisition number exists

- 644- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Make sure priority exists
Make sure stock number exists
Make sure FSC number exists
Make sure suffix exists
Make sure estimated price exists
Make sure quantity exists
Make sure unit of issue exists
Make sure extended price exists and is calculated correctly (quan*price)
Make sure shiptozip exists
Make sure Addresses is set to public
Make sure FSC is editable and changes stick
Make sure quantity is editable and changes stick
Make sure response date is editable and changes stick
Make sure delivery date is editable and changes stick
Make sure additional clauses is editable and sticks
Toggle item description upload box to make sure when enabled CDF
containing item description is placed on bcasitemupload queue
Test auto disable of item description upload by making sure auto upload
is disabled when item description is read in which had already been
uploaded by GATEC.
Review item description CDF to insure it is correct
On 840 make sure BQT segment indicates proper response date
On 840 make sure BQT segment indicates 00 (for new RFQ)
On 840 make sure DTM segment indicates correct delivery date
On 840 make sure P01 segment has correct quantity and unit of issue
On 840 make sure PID segments have correct item description
On 840 make sure P01 segment has correct manufacturer
On 840 make sure P01 segment has correct part number
On 840 make sure P01 segment has correct FSC, and stock number
On 840 make sure REF*65 segment has correct UTN
On 840 make sure GS segment has current date
On 840 make sure segment count in SE segment is correct
Make sure 840 is received by test vendors on our VANS and can be read
using their software
Issue several 840s that are specifically directed. Try combinations of
issuing to PUBLIC as well as to other directed cage codes. Make above
checks on those 840's and insure they are correctly delivered.
Try separating cage codes for directed RFQs with white space, comma,
or carriage return. All should be recognized
Try specifying bogus cage codes for directed RFQs. Make sure system
recognizes the bad cage codes

Make sure no fields can be edited while RFQ is under open
Using send864, send in at least three messages (>30 lines) per RFQ
Make sure U appears by RFQ's messages where sent to on workload
screen
Make sure all messages can be viewed, and get placed in read category

- 645- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Make sure each message can be responded to, using respond
Make sure each of the sent messages can be reviewed under sent
Make sure each received message can be placed in needs action
When a message has been placed in needs action, make sure N appears
by RFQ number on workload screen
Attach 5 notes, using compose, to each RFQ. Each note should be at
least 30 lines long
Make sure each of the notes can be reviewed under the notes category
Make sure 864 responses get to LLNL test vendor
On 864 make sure DTM segment has today's date
On 864 make sure REF*65 and REF*DX has UTN number
On 864 make sure REF*IX segment has correct line item number
On 864 make sure MSG segments have the correct message text
On 864 make sure the SE segment has the correct segment count
Choose an RFQ to amend (under open), change some fields, and send
the RFQ out again (via confirm amend)
On 840 make sure BQT segment indicates amend (01)
Make all other standard 840 checks mentioned above, insuring the
amended information is on the 840

Using sendThemAll make standard bids, bids with terms, bids with GSA
contract numbers, alternate bides, bids indicating can't quote, and bids
with nte text for the 5 RFQ's that were issued
Use the close utility on delphi to move RFQ's from open to closed
For each closed RFQ make sure there has been no change in message
status when the RFQ was moved from OPEN to CLOSED
For each RFQ go to the REVIEW QUOTES screen
Make sure RFQ number is correct
Make sure line item number is correct
Make sure requisition number is correct
Make sure FSC code is correct
Make sure suffix is correct
Make sure priority is correct
Make sure stock number is correct
Make sure estimated price is correct
Make sure quantity is correct
Make sure unit of issue is correct
Make sure extended proce is correct
Make sure item description is correct
Make sure all fields are read only
Make sure all quotes sent in appear
Make sure a columns align
Make sure payment column is populated for bids with terms
Make sure proper boxes indicating flag types are checked (e.g. G for
GSA contract)
Make sure proper flags are used (e.g. G for GSA contract, etc) under flag
column

- 646- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

For each quote, go to the REVIEW QUOTE screen
Make sure RFQ number is correct
Make sure line item number is correct
Make sure stock number is correct
Make sure estimated price is correct
Make sure FSC is correct
Make sure SIC (if any) is correct
Make sure Item description is correct
Make sure quoting vendor cage code is correct
Make sure quote effective date is correct
Make sure quote expires date (if any) is correct
Make sure vendor name is correct
Make sure unit proce is correct
Make sure quantity is correct
Make sure unit of issue is correct
Make sure extended price is correct
Make sure delivery date is correct
Make sure payment percent, days, and net are correct if vendor specified
terms
Make sure variation (if any) correct
Make sure FOB (if any) correct
Make sure flags specified are correct
Make sure quote description matches text on input 843
Make sure FSS contract number and expiration date are correct if GSA
contract has been specified
Amend RFQ and send in more bids. Make sure existing bids (received
before amendment) are marked with the flag indicating received before
amendment
Make sure nte text shows up correctly (and is scrollable) on quotes that
have attached nte text
Make sure alternate bid flag shows up when alternate bids have been
received
Make sure bids which come in indicating unable to quote are so
indicated on the REVIEW QUOTES screen
Make sure bids coming from cage codes who have sent in unread 864
messages are so marked with the M flag in the REVIEW QUOTES
screen. Al so make sure M goes away when messages are read

Make sure checking for govt. password and cage work (i.e. send in bids
with bad cage code and or bad govt. password
Insure 824 which is generated is correct

Select a non gsa bid with no terms and go to MAKE AWARD
Make sure correct automated PIIN number comes up
Make sure RFQ number is correct
Make sure line item correct
Make sure contract field blank (non gsa)

- 647- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Make sure date field has current date
Make sure order statements read EX IN SI GU (non gsa)
Make sure quantity is correct
Make sure unit of issue is correct
Make sure unit price is correct
Make sure transaction totals are correct (unit price * quantity)
Make sure delivery date is correct
Make sure awardee's name is correct
Make sure first 5 characters of bcas vendor code is correct
Make sure FOB point reads D (non gsa)
Make sure no variation
Make sure no payment percent, days, or net if no terms specified
Make sure DO rating is c9b
Make sure negotiation authority is 0301
Make sure competition code is y
Make sure confirmation field is blank
Make sure BSP field has correct buyer
Press MAKE AWARD; if successful next closed RFQ will display its
bids
Next make an award to a bidder who has specified bids
All checks should be the same as mentioned above, except for the
following:
Make sure payment percent, days, and net fields have the correct data
specified
After doing all checks, press MAKE AWARD again.
Next, make an award to a bidder who has specified a GSA contract
number
All checks should be the same as mentioned above except for the
following:
Make sure correct GSA contract number displayed on award screen
Make sure PIIN number used is of GSA type
Make sure order statements read IN SI
Make sure negotiation authority reads INTG
After doing all checks press MAKE award again
Next using downLoadPiins "unuse" a prior used non GSA piin. Make
another award and make sure that unused piin is used
Do the same thing for a GSA piin.
Make awards for RFQs who have had their quantity changed before
issue, after issue (amendment), and during award. Make sure the P/Q
flag is correct in the BCAS cdf for quantity increase (P) and quantity
decrease (Q).
Try awarding to bidder who has submitted bids from 2 different VANs.
Make sure 850 goes to the right VAN
Next using downLoadPiins, mark all non GSA piins as used. Make
another award and make sure the award piin box is blank and user is
allowed to input piin. Make sure award can commit
Do the same thing for a GSA piin

- 648- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Try redirecting a closed RFQ and insure that the RFQ "goes away" from
the closed workload screen
Try HOLDING from OPEN/UNISSUED/CLOSED
Try RE-DIRECTING from OPEN/UNISSUED/CLOSED
In the case of re-direct make sure re-direction can occur for each of the
twelve specified reasons. Make a similar check for HOLD (but hold only
has 4 possible reasons)
On 850 make sure GS segment has current date
On 850 make sure REF*65 has correct UTN number
On 850 make sure REF*DX has correct UTN number
On 850 make sure DTM segment has correct delivery date
On 850 make sure N1 loops have correct WP contracting, accounting,
and delivery addresses
On 850 make sure P01 segment has correct price, unit of issue, stock
number and quantity
On 850 make sure PID segment has correct item description
On 850 make sure AMT segment has correct total (unit price*quantity)
On 850 make sure SE segment has correct segment count
On 836 make sure P01 has correct price, unit of issue, quantity, stock
number and federal supply class
On 836 make sure BCO segment has correct RFQ issue date and correct
RFQ award date
On 836 make sure REF*65 statement has correct UTN number
On 836 make sure SE segment has correct segment count
On 836 make sure GS segment has current date
Inspect all BCAS CDF's to make sure they will be uploadable

Verify 997 generated upon receipt of 864 and or 843

Initiate at least 4 tty clients and have each of them initiating REVIEW
RFQ while a PC client starts up, switches category from UNISSUED to
CLOSED, REVIEW QUOTES, switches category from CLOSED to
OPEN, then REVIEW RFQ. Insure delay time between any one action
does not exceed 3 to 4 minutes.

Verify Acknowledgment checking is working for all 840's,850's, 864's
generating during testing

Attempt to cancel awards. Verify CDF generated is uploadable (and
properly queued) and will result in cancel. Also insure 850 CDF will
produce proper 850 cancel X12 (code 01 used in BEG segment)

- 649- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Revision History

1.1 6/29/93 Added check on response date/delivery date times based on
priority level(s)

Added check to make sure response date does not fall on holiday/weekend.

Added check for sending in alternate bid, non quoting, and bids with nte segment text

Added check to make sure received prior to amendment flags working on received
843's after amendment

Added check on enable/disable item description upload

Added review item description upload check

Added test of auto disable for item description upload

Added test of re-direction for all 12 categories

Added check of cage code/govt. password

Added check of 824 generated under cage code/govt. password errors

Added 997 generator check for 843, 864

1.2 8/3/93 Added specific HOLD check. Added checks for both HOLD
and REDIRECT from UNISSUED and CLOSED

Added speed testing using 5 tty clients

Added constraint to export a copy of WP database before testing

1.3 10/4/93 Added check of acknowledgment system,

Added check for cancel award

Added check for directed RFQs

Added check for search on piin/RFQ number

Added check with test vendors on VANs

1.4 11/16/93 Added check to make sure bid with unread 864 marked with
M flag on REVIEW QUOTES screen

Added checks for correct P and Q calculation in BCAS CDF

- 650- 1 January 1994

Internal Description and Maintenance Guide
Doc ID: TISP940106

Rev ID: Release 1

Added check for submission of quotes and award to vendor who is using 2 VANs

T
echn

ical
In

form
ation

D

epartm
en

t •
 L

aw
rence L

iverm
ore N

ational L
aboratory

U
niversity of C

alifornia •
 L

iverm
ore, C

alifornia 94551

